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ABSTRACT
Copland is a domain specific language designed for describing, an-

alyzing and executing attestation protocols. Its formal semantics

defines evaluation, sequencing, and dispatch of measurements re-

sulting in evidence describing a system’s state. That evidence is

in turn appraised to determine if and how an external system will

interact with it. The contribution of this work is a description of the

first Copland interpreter and the attestation manager built around

it. Following an overview of the syntax and formal semantics is a

collection of motivating examples. Next is a description of a Haskell-

based Copland interpreter and the attestation manager constructed

around it. Examples are provided to show the interpreter’s interface

format. A description of the Copland landscape and future goals

closes the presentation.
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1 INTRODUCTION
Remote attestation is the activity of making a claim about properties

of a target by supplying evidence to an appraiser over a network [3].

In its simplest form, a remote attestation process consists of an ap-
praiser that sends an attestation request to a target that performs

an attestation and responds with evidence describing desired prop-

erties (Figure 1). The appraiser evaluates evidence to determine if

the target is trustworthy while the target protects its secrets in the

spirit of a zero-knowledge proof system [5].

Evidence returned by an attestation consists of descriptive ev-

idence and meta-evidence. Descriptive evidence traditionally in-

cludes hashes, TPM PCRs [20], and PCR composites, constructed
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Figure 1: Basic attestation architecture.

by measuring target components. Meta-evidence includes nonces,

signatures, and certificates to ensure freshness, integrity, and au-

thenticity of evidence. While evidence describes the target system,

meta-evidence certifies the evidence gathering process.

A simple attestation example useful as a running example is

determining that a target system is running a virus checker. A

naive protocol returns a signed evidence package that includes a

nonce for freshness, N0, and the hash of the virus checking binary,

vc. The interaction between appraiser A and target B is expressed

using a canonical protocol notation as:

A→ B : N0

B → A : [[#vc,N0]]B

A sends N0 to B initiating the attestation. B responds with the hash

of vc, #vc, and N0 together signed using its private key. A then

checks the evidence signature, checks the nonce, and compares

the virus checking software hash with a known good value. This

simple appraisal guarantees freshness, integrity and authenticity,

and good measurement. Importantly, A gains no knowledge of B
other than it produced the correct hash value.

Attestation becomes more complicated with the introduction

of layered attestation and evidence bundling [16], mutual attesta-

tion, non-trivial contextual measurement [11], and stateful mea-

surement [1, 20]. As a result attestation is frequently implemented

using protocols that perform measurement, gather evidence, and

prepare meta-evidence. An appraiser and target must agree on a

protocol to execute before initiating an attestation.

One such protocol performs a more detailed appraisal of the

virus checker. The appraiser will again send a nonce and request

an attestation. The appraiser in this case wants information about

virus checker’s signature file and signature file server as well as

executable code. As an added challange, the appraiser may not

have details of the signature file server and must rely on the target

to perform appraisal. A protocol for such a transaction might be

represented as follows:
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A ← USM ā | KIM P ā | CPY | SIG | HSH | · · ·
T ← A | @P T | (T → T ) | (T π≺ T ) | (T π∼ T )
E ← ξ | UP (E) | KPP (E) | [[E]]P | #P E |

(E ;; E) | (E ∥ E) | · · ·
where π = (π1,π2) is a pair of splitting functions.

Figure 2: Term syntax.

A→ B : N0

B → S : N1

S → B : [[#s,N1]]S
B → A : [[#vc, #sf, app([[#s,N1]]S ),N0]]B

In this attestation protocol A remains the appraiser while B is the

target.A sends a nonce to B to initiate attestation and B immediately

sends a new nonce to S , the signature file server, to initiate its

attestation protocol. S returns a signed hash with the nonce from B.
B returns a signed hash of its virus checker binary, its signature file,

and the result of B’s appraisal of evidence from S . A appraises the

evidence by checking B’s signature, checking the original nonce,

checking hashes, and checking the appraisal result.

There are a number of potential problems and design decisions

that arise when designing even simple protocols like these exam-

ples. Nonce reuse, caching server evidence, server appraisal by the

target or appraiser, and ordering measurements and appraisals all

play a role in design and verification. Ad hoc mechanisms are not

suitable for capturing nuances of even simple attestation protocols.

Providing mechanisms for representing, verifying, and executing

attestation protocols is the focus of the Copland effort.

2 COPLAND
Copland is a domain specific language and formal semantics for

describing attestation protocols. It is designed to address specific

issues of ordering and remote execution critical to attestation pro-

tocol design. Copland’s semantics are defined as a deep embedding

in Coq [2]. Terms (called phrases) define individual protocols. Evi-
dence defines the form of evidence produced by protocol execution.

A denotational semantics maps terms to the evidence they produce

while an event-based operational semantics defines system events

associated with protocol execution. Together they define both cor-

rect evaluation results and proper event ordering during evaluation.

A brief description of Copland’s formal semantics is necessary to

understand the attestation manager written around it.

2.1 Terms and Evidence
Formal syntax definitions for Copland terms and evidence appear

in the grammar of Figure 2 while a denotational semantics relat-

ing terms to evidence is defined in Figure 3. Informally there are

four term types in Copland: (i) measurements; (ii) operations; (iii)

execution sequencing; and (iv) requests.

The meta-variable P appears throughout the term grammar and

represents a place. In Copland places represent any location where

attestation protocols are interpreted. Each place has a unique pri-

vate key and a policy identifying how it performs measurements.

In Copland implementations, P is always associated with an attes-

tation protocol interpreter as described later.

The terms (USM ā) and (KIM P ā) represent measurements and

are held abstract in the language. (USM ā) is a User Space Mea-
surement that performs a measurement in the local user space. ā
abstractly represents the details of the measurement operation.

Such measurements include hashing a file, requesting a TPM quote,

or examining the local /proc directory contents. For example, the

term (USM hash /etc/passwd) might be used to request a hash of

a system’s password file. In contrast, (KIM P ā), is a Kernel Integrity
Measurement that examines some external system. An example of

such a measurement is running LKIM [11] on a virtual machine’s

Linux kernel. ā abstractly represents the the measurement opera-

tion while P represents the place measured. The term (KIM 5 LKIM)
might be used to request that LKIM be run on the kernel associated

with place 5.

The terms CPY, SIG, and HSH are a minimal set of evidence op-

erations. Measurements produce evidence while these operations

process evidence by copying, signing, and hashing evidence values,

respectively. Copland’s design supports adding other operations

similarly, as long as they consume and produce evidence. An alter-

native to adding language primitives is to encode new operations

as custom USM procedures. This approach has the advantage of

keeping the language smaller, but may harm protocol readability

and complicate static analysis.

The terms (T1 → T2), (T1

π≺ T2), and (T1

π∼ T2) compose terms

and impose ordering on execution. (T1 → T2) composes two terms

and specifies that T2 strictly follows T1 and consumes evidence it

produces. (T1

π≺ T2) also specifies sequential execution, but it splits

evidence between the terms using the pair of projection functions π .
As a common example, π = (id,⊥) would route all prior evidence

to T1 and empty evidence to T2. (T1

π∼ T2) also splits evidence, but

allows the terms to execute in parallel.

Finally, @P (T ) is a communication primitive requesting that a

term be evaluated at another place. Similar to a remote procedure

call, @P (T ) requests that a place interpret a specified protocol and

return the resulting evidence. The executed protocol will frequently

be subject to negotiation using policy as context.

Evidence produced by protocol execution includes basic values

and composition operators that indicate order and place. ξ repre-

sents empty evidence. By definition no Copland term can produce

ξ , but it is useful as initial evidence. UP (E) and KPP (E) are evidence
values produced by USM and KIM, respectively. E is for evidence

accumulated prior to executing the USM or KIM, and both record

the place targeted by the associated measurement. KIM separately

records the place performing the measurement while for USM the

same place plays both roles. The proper way to read KPQ (E) is “the
result of a KIM measurement of place P performed by place Q”.
It is worth noting that the evidence semantics for USM and KIM
terms does not retain the list of arguments, ā. This does not cause
problems for analysis since the appraiser can always recover ā from
the originating Copland term. We do include the argument lists

in the concrete evidence datatype in our Haskell implementation,

but this is simply an implementation quirk for convenience. [[E]]P
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E(USM ā,p, e) = Up (e)
E(KIM q ā,p, e) = Kqp (e)
E(CPY,p, e) = e

E(SIG,p, e) = [[e]]p
E(HSH,p, e) = #p e

E(@q t ,p, e) = E(t ,q, e)
E(t1 → t2,p, e) = E(t2,p, E(t1,p, e))

E(t1
π≺ t2,p, e) = E(t1,p,π1(e)) ;; E(t2,p,π2(e))

E(t1 π∼ t2,p, e) = E(t1,p,π1(e)) ∥ E(t2,p,π2(e))
where π = (π1,π2)

Figure 3: Evidence Semantics.

and #P E are the results of signing and hashing, again recording

the place performing the operation. Finally, (E ;; E) and (E ∥ E)
compose evidence taken in sequence and parallel, respectively.

2.2 Denotational Semantics
Figure 3 defines a denotational semantics, E(t ,p, e), mapping each

Copland term, t , initial evidence value, e , in some place, p, to a

resulting evidence term. In the formal Copland specification this

is called the evidence semantics, and it provides a requirements

definition for Copland interpreters. This semantics captures the

structure of the gathered evidence rather than concrete mesurement

results. In this sense, it might be more accurate to call E an evidence

type assignment. A major outcome of our Haskell implementation

(described later) was the need to add concrete measurement values

to the evidence datatype. To what extent the properties of these

values make their way back to the formal semantics remains an

open research question. For the examples in the following section

we use the concrete evidence representation rather than the formal

evidence semantics in order to demonstrate concrete measurement

results. For example, @1 (USM hash vc) results in U1(#vc) rather
than U1(ξ ) as it would in the formal semantics.

2.3 Examples
It is possible to encode various attestation processes associated

with our virus checker example in Copland terms. The simplest

action is to ask place 1 to return a hash of its virus checker:

@1 (USM hash vc)
Adding meta-evidence to help assure authenticity, ask place 1 to

return a signed hash of vc:

@1 ((USM hash vc) → SIG)
A layered attestation asks place 1 to determine the integrity of

place 2 and then asks place 2 to return a hash of its signature server,

ss:

@1 ((KIM 2 LKIM) π≺ @2 (USM hash ss))
This protocol implements an important pattern used to chain trust.

1 performs an LKIM measurement on 2 to gather evidence and then

asks 2 to perform a measurement. During appraisal 1 can assume

that 2’s measurement is trustworthy if the LKIM measurement

shows that 2 itself is trustworthy. Continuing this process, 2 may

then do the same to 3. If the chain of LKIM measurements is sound,

then 3 is trustworthy because its behavior was observed by a trust-

worthy 2 whose behavior is observed by a trustworthy 1, assuming

1 is a root-of-trust.

One might consider making the previous request more efficient

by performing the LKIM measurement and the signature server

measurement in parallel:

@1 ((KIM 2 LKIM) π∼ @2 (USM hash ss))

Unfortunately, the parallel protocol is semantically quite different

than the sequential protocol. The sequential protocol assures that

1’s LKIM measurement of 2’s kernel occurs strictly before 2’s mea-

surement of its signature server. This ordering of measurements

gives place 1 high confindence that 2’s measurement was performed

on the system associated with the preceding LKIM measurement.

An adversary could theoretically corrupt the kernel at place 2 be-

tween the two measurements to avoid detection. However, this

ordering puts more burden on the adversary to corrupt a deeper,

more protected kernel component and perform the attack in a small

time-of-check-time-of-use window [16, 17]. If the measurements

are performed in parallel, this inference cannot be made. If the

LKIM measurement occurs after the signature server measurement

we know nothing of 2’s state when the signature server is hashed.

Regardless of what 1 learns from the LKIM measurement, the chain

of trust from 1 to 2 is broken.

To ensure freshness of the virus checker measurement, USM N0

introduces a nonce that becomes the initial evidence passed to the

@1 term:

@0 (USM N0) → @1 ((CPY
π≺ (USM hash vc)) → SIG)

where π = (id,⊥) splits the nonce over the two branches of the

≺ compsition. id sends the nonce to CPY while ⊥ sends nothing

to the USM. The resulting evidence is U0(N0) ;; U1(#vc). The last
term in the sequence causes place 1 to sign the result generating

the evidence:

[[U0(N0) ;; U1(#vc)]]1
Place 0 can appraise the result by checking place 1’s signature on

the evidence, then checking the nonce and the hash value. Again

this is an important attestation protocol pattern where signed ev-

idence that includes a nonce provides evidence of freshness, in-

tegrity, and authenticity.

Mutual attestation occurs when both places request attestations

and appraise results. An initial example has place 1 executing a term

from place 0 that asks place 0 for an attestation while performing

its own attestation:

@0 (@1 (@0 (USM hash am) ∼ (USM hash am)))

In agreeing to execute this protocol, place 0 is authorizing place 1

to request an attestation while responding to its original request. In

this case, both place 0 and place 1 hash their respective attestation

managers. When the protocol completes, each place will have a

hash of the other. The attestation protocol is mutual because both

places are playing the role of appraiser and target.
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This protocol has place 1 “in charge” of the attestation process

by initiating measurement of place 0. In contrast, place 0 initiates

attestation in the next protocol. By changing the request to place 1,

place 0 becomes the initiator:

@0 (@1 (@0 ((USM hash am) ∼ @1 (USM hash am))))
In this case, place 1 asks place 0 to hash its attestation manager

while requesting that 1 measure its own attestation manager.

In a final mutual attestation example, ordering is enforced by

specifying that the attestation of place 0 must occur before the

attestation of place 1:

@0 (@1 (@0 (USM hash am) ≺ (USM hash am)))
A final example defines a protocol for the virus checking layered

attestation example from the introduction. In this protocol, place 0

is the appraiser, place 1 is the target where the virus checker runs,

and place 2 is the signature file server.

@0((KIM 1 LKIM)
≺ @1(((USM hash vc) ∼ (USM hash sf))
∼ ((KIM 2 LKIM) ≺ @2 (USM hash ss))))

Place 0 first runs a KIM measurement on place 1. Then it asks

place 1 to run a protocol that measures its virus checker, its sig-

nature file, and the signature server in parallel. Place 1 measures

the signature server by first performing a KIM measurement, then

requesting that place 2 measure its signature server. The KIM and

place 2 measurements must occur in sequence.

Evidence from this protocol will have the form:

K1

0
(lkim1) ;; (U1(#vc) ∥ U1(#sf) ∥ (K2

1
(lkim2) ;; U2(#ss)))

where #x is the hash of x and lkimx is the result of running LKIM

on place x. Evidence is appraised by: (i) checking KIM and USM ev-

idence values against golden values; and (ii) checking measurement

value composition.

3 INTERPRETING COPLAND
While the Copland language is adept at representing and verifying

remote attestation protocols, it leaves many open design decisions

for its surrounding execution infrastructure. A Haskell prototype

demonstrates the Copland approach by providing an interpreter

for protocols embedded in a full attestation manager [3]. At a high

level the interpreter behaves like a canonical language interpreter;

it takes a Copland protocol term and some initial evidence as input

and produces an evidence value. However, the @p (t) term adds

an interesting wrinkle by delegating execution of terms to remote

places running their own instance of the interpreter. Thus, each

interpreter is responsible not only for performing local measure-

ments, but it must exist within a communication infrastructure

to send requests and gather responses. The interpreter must also

respect measurement orderings as specified by the Copland term,

bundle evidence, choose cryptographic primitives, and perform

appraisal.

This Haskell prototype serves as a basis for testing new Copland

language extensions and as a reference interpreter as the approach

is extended to other increasingly formal language environments.

Two long-term goals are a collection of communicating attesta-

tion managers running on multiple operating systems in multiple

language environments and formally verified interpreters for high-

assurance environments. The Haskell interpreter is a first step in

establishing the feasibility of the approach before verification.

Throughout interpreter and infrastructure development the ar-

chitecture shown in Figure 4 has emerged with distinct logical

components separate from the interpreter. The interpreter together

with run-time infrastructure implements an attestation manager.

While the Copland definition has been formally specified and ver-

ified, the Copland interpreter and attestation manager have not.

Although this initial version will not be verified, it provides critical

understanding of implementation details. Ultimately, our goal is to

better understand the inherent challenges of writing and analyzing

real-world remote attestation protocols.

3.1 Main Interp Loop
Themain interpreter logic centers on a dispatching function, interp
(Figure 5). The function is recursive and pattern matches over

T(Figure 6), the Copland Haskell abstract syntax for protocol terms,

invoking the corresponding measurement, crypto, or communica-

tion actions before bundling and returning an evidence package.

interp also inputs initial evidence supporting evidence accumu-

lation from earlier in protocol execution or from a prior protocol

run. The top-level structure of interp mimics the evidence seman-

tics (Figure 3) and hides much of its complexity in the USM/KIM

dispatch functions (inerpUSM, interpKIM), abstract cryptographic
commands (signEv, genNonce), and abstract communication ac-

tions (toRemote).
As an example of hiding implementation details, the toRemote

function for @q (t ′) hides all underlying communication manage-

ment and simply reads as a request that place q interpret Copland

term t ′ with initial evidence e . This decoupling of high level inter-

preter actions from the underlying infrastructure highlights the

distinction between the interpreter and the attestation manager.

The interpreter provides high-level term execution derived from the

semantics, while the attestation manager provides implementation

details. The architecture exposes logical boundaries where we can

drop in verified components as they become mature.

3.2 Places
An important design goal of the Copland interpreter is that each

attestation manager instance should share as much core function-

ality and structure as possible, yet remain parameterized over the

environment where it runs. In the Copland formal definition the ab-

stract notion of environment is called place and is simply a natural

number identifier. A good way to think of a place is an attestation

manager with its own host, resources, and software configuration.

Our development revealed a variety of environment-specific com-

ponents associated with each place. For example, each place must

manage and protect a private key. That key may take the form

of a TPM Attestation Key, an RSA key pair, a PUF-based identity,

or something similar to a private key in less capable (IOT) plat-

forms [19]. The key is used for signing evidence as well as uniquely

identifying the platform. The key must support identity and sign-

ing regardless of implementation, and resulting evidence must be

interpreted across multiple platforms.
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Figure 4: Attestation Manager structure and interfaces.

3.3 Signing
The SIG Copland term represents an abstract operation that per-

forms a digital signature over the accumulated evidence. Interpret-

ing SIG at a particular place provides authenticity and integrity

meta-evidence for the evidence it consumes. In the formal speci-

fication this amounts to tagging evidence with a unique platform

identifier and assuming reasonable abstract properties [4, 14] of dig-

ital signatures. However, a concrete implementation must resolve a

number of details including key management and cryptographic

algorithm selection. Key management is a well-known difficult

problem. For this implementation we simply store keys in unpro-

tected files and use system environment variables to point each

interpreter instance to its private key. Future work will incorpo-

rate protected storage and key management with both TrustZone

and TPM-based technologies. For generating keys and signing, the

prototype implementation uses an eliptic-curve public-key signa-

ture system. This library is chosen for its simple API and Haskell

implementation. The abstract design of our interpreter supports

dropping in different algorithms to fit the security policy of each

interpreter implementation.

3.4 Sequencing
Ordering is a critical part of the Copland semantics. The LN, BRS, and
BRP constructors from the Haskell datatype correspond to the→, ≺,
and ∼ ordering operations in the formal language, respectively. As

seen in Figure 5, there are subtle differences in how interp must

handle the various sequencing styles.

For LN the interpreter first evaluates t1, the left-most protocol

subterm, using the current accumulated evidence e to produce the

intermediate evidence value e1. The next line of interpretation

depends on the pseq function from Haskell’s Control.Parallel
library that provides the user finer-grained control over evaluation

order in the presence of Haskell’s laziness. pseq takes two argu-

ments and ensures that the first argument fully evaluates before

returning the second argument. Thus, pseq e1 (interp t2 e1)
ensures that e1 fully evaluates before returning (interp t2 e1).
Once pseq returns (interp t2 e1), it can evaluate and return

its result, res. This machinery is necessary to force sequential ex-

ecution in Haskell because Haskell is a lazy language by default.

Without using pseq there is nothing preventing evaluation of the

t2 term before e1 is fully computed.

The BRS case is similar, except for initial evidence passed to each

subterm. The initial evidence e is first split into es1 and es2. es1 is
routed to the t1 subterm to produce evidence e1, and es2 is routed
to t2. Once again, we use pseq to force evaluation of e1 before

(interp t2 es2) can begin. Finally, we return sequential evidence

via the SS constructor corresponding to ;; in the formal evidence

definition.

BRP is virtually identical to BRS except the omission of pseq.
This allows Haskell to potentially compute e1 and e2 in parallel.

There are ways to explicitly inform Haskell to compute values in

parallel, but this is an optimization and avoided at present. BRP
constructs parallel evidence via the PP constructor corresponding
to ∥ in the formal definition.

One simplification made in the Haskell implementation is re-

stricting data splitting functions to identity and empty. The formal

semantics allows arbitrary splitting functions that route initial ev-

idence to the two constituent terms. No protocol developed thus

far requires any kind of filtering or projection. Either the initial

data is passed or is not passed. Thus, the current interpreter im-

plementations only provide for identity and empty functions as

splitting operations. This dramatically simplifies both verification

and implementation.

The formal verification of Copland and its execution semantics

relies on the interpreter having a reliable mechanism to ensure se-

quential measurement actions. The pseq solution is Haskell-specific
and somewhat ad hoc. Attestation results are trustworthy only as

much as the pseq implementation. This highlights a semantic gap

between the formal semantics and the unverified implementation

and motivates the need for such a mechanism in any instance of the

interpreter. Bridging that gap will require a guaranteed sequencing

operation, verified implementation, or trusted attestation manager.

3.5 Concrete Evidence
TheCopland formal specification includes the definition of evidence,

but the representation is held abstract and is more accurately clas-

sified as an evidence type. It describes the structure of the evidence
without specific concrete results of measurements such as hash



HotSoS, April 1–3, 2019, Nashville, TN, USA Adam Petz, Perry Alexander

interp :: T -> Ev -> COP Ev
interp t e = do

p <- asks me
ev <-

case t of

USM i args -> do
bs <- interpUSM i args
return $ U i args p bs e

SIG -> do
bs <- signEv e
return $ G p e bs

CPY -> return e

NONCE -> do
bs <- genNonce
return $ N p bs e

AT q t' -> do
e' <- toRemote q t' e
return e'

LN t1 t2 -> do
e1 <- interp t1 e
res <- pseq e1 (interp t2 e1)
return res

BRS (sp1, sp2) t1 t2 -> do
let es1 = splitEv sp1 e
let es2 = splitEv sp2 e
e1 <- interp t1 es1
e2 <- pseq e1 (interp t2 es2)
return $ SS e1 e2

BRP (sp1, sp2) t1 t2 -> do
let es1 = splitEv sp1 e
let es2 = splitEv sp2 e
e1 <- interp t1 es1
e2 <- interp t2 es2
return $ PP e1 e2

return ev

Figure 5: Representative cases of the interp function.

values, nonce values, and signatures. Every implementation must

address this by introducing a concrete evidence datatype that holds

actual results of protocol execution. Figure 6 shows the concrete

evidence grammar, Ev, for the Haskell implementation on Linux.

By convention a concrete evidence value accumulates as Cop-

land protocol execution proceeds. One issue encountered during

development is deciding how to perform cryptographic operations

over this evidence representation. Note that the evidence grammar

type Pl = Int
type ARG = String
type ASP_ID = Int

type BS = ByteString

data T
= USM ASP_ID [ARG]
| KIM ASP_ID Pl [ARG]
| SIG
| HSH
| NONCE
| AT Pl T
| LN T T
| BRS (SP,SP) T T
| BRP (SP,SP) T T

data Ev
= Mt
| U ASP_ID [ARG] Pl BS Ev
| K ASP_ID [ARG] Pl Pl BS Ev
| G Pl Ev BS
| H Pl BS
| N Pl BS Ev
| SS Ev Ev
| PP Ev Ev

Figure 6: Haskell datatypes representing Copland terms(T)
and evidence (Ev).

includes places (Pl) as numbers, argument strings (ARG) and iden-

tifiers (ASP_ID) describing the USM/KIM actions performed, and

raw bit strings (BS) representing results of measurement.

Although useful for formal analysis and definition purposes,

place identifiers and argument strings need not be a part of crypto-

graphic operations. To prepare evidence for hashing and signing,

we extract the raw bits and compose sequential evidence by ap-

pending the raw bits recursively. There are many ways this could

be done, but our initial efforts identified the importance of having

a standard procedure to take evidence to a canonical representa-

tion, perform the necessary crypto, then re-package the bits into

the correct location in the evidence representation. This operation

is crucial to integration of remote interpreters. Our first attempt

at such an operation is the encodeEv recursive Haskell function

shown in Figure 7. encodeEv takes concrete evidence as input and

produces raw bits as output. Note that _ in Haskell means to ignore

a particular positional parameter.

3.6 Measurement
Copland defines two general measurement types. A User Space

Measurement (USM) is a measurement performed in the same space

as the attestation manager. A Kernel Integrity Measurement (KIM)

is a measurement performed in the execution space of a different

attestation manager. KIMs are used for creating trust chains. A
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encodeEv :: Ev -> BS
encodeEv e =

case e of
Mt -> B.empty
U _ _ _ bs _ -> bs
K _ _ _ _ bs _ -> bs
G _ _ bs -> bs
H _ bs -> bs
N _ bs _ -> bs
SS e1 e2 ->

let e1bs = (encodeEv e1) in
let e2bs = (encodeEv e2) in
(B.append e1bs e2bs)

PP e1 e2 ->
let e1bs = (encodeEv e1) in
let e2bs = (encodeEv e2) in
(B.append e1bs e2bs)

Figure 7: Cannonical way of taking concrete evidence to its
binary representation.

system is trusted when it is strongly identified and directly observed

behaving as expected or indirectly observed behaving as expected

by a trusted third party [12]. KIM measurements that observe a

different place provide both direct and indirect evidence of behavior.

Once a KIM is performed, a USMmay be performed by themeasured

system, knowing that evidence from the KIM may be appraised to

determine good or bad behavior.

Copland intentionally leaves USM and KIM terms abstract in

the formal definition. This allows for extending the vocabulary

of measurements without extending the Copland language itself.

While ideal from a language design perspective, it moves the burden

of dispatching measurement routines to the interpreter on each

platform. For example, consider a platform that receives a request

with the following Copland term: (USM hash sf). Upon encounter-

ing the measurement ID hash, the interpreter must dispatch the

measurement task to something that knows how to take a hash of

the file sf.
The mapping from an abstract measurement description to a

concrete implementation is called attestation policy and is imple-

mented by the dispatcher. Each attestation manager implements

policy in a manner specific to its environment. Although conceptu-

ally simple, in specifying measurement mechanism policy defines

privacy. When a USM or KIM performs a measurement, policy

defines what information the target is willing or able to prove to

the appraiser. Conversely, when an appraiser requests a USM or

KIM, policy restricts the information available. Thus, policy will be

an important factor in protocol negotiation between and appraiser

and target.

In the current implementation, policy is simply a Haskell func-

tion that maps well-known measurement IDs to Haskell functions

that perform the measurement actions such as hashing file contents,

listing a directory, or building a composite hash. Later versions of

the interpreter will have USM and KIM measurement services run-

ning as dedicated servers. Nonetheless, formalizing this type of

“measurement selection” remains an open research question and

moves into the realm of policy. Early experiments that involve mul-

tiple interpreters from different language/execution environments

highlight the need for a centralized, precise description of each

USM/KIM operation. For example, (USM hash sf) should take a

SHA-256 hash of the raw contents of a file with an absolute path-

name of sf.

3.7 Abstract Communication Layer
A distinguishing feature of remote attestation is that participants

in a protocol may be on diverse platforms with drastically different

capabilities and resources. An example of this in the larger context

of this work is the communication infrastructure surrounding the

interpreter. Some platforms have a full TCP/IP stack, others rely

on VM to VM communication (XEN’s vchan), others may rely on

UDP, or even a custom embedded bus. An important design goal of

this interpreter is making the main loop unaware of the concrete

communication mechanism and interact with it via a standard

send/receive interface. The interpreter should be aware when new

requests for attestation have arrived and have an abstract notion of

what participant sent them. It should not be concerned with how

they got there or the details of finding an exact address to send the

response.

We address this design goal by treating each place as a logi-

cal endpoint, each with its own mailbox for incoming messages.

We leverage Haskell’s Software Transactional Memory[18] (STM)

library[7] to allow safe concurrent access to mailboxes, both by the

communication mechanism and the interpreter loop. Not only does

this abstract communication strategy support portability among

diverse platforms, but it allows dropping in alternate local commu-

nication mechanisms that are ideal for testing an entire protocol

execution on a single platform, using multiple threads that act as

the distinct participants.

Our current implementation supports two communicationmodes.

The first is a shared memory model where each participant has

its own thread in the same process, and they communicate via

shared memory. This mode is ideal for testing the interpreter logic

independent of the communication infrastructure, as it requires

minimal configuration and can all be orchestrated from a single

platform terminal. The second mode allows for socket-based com-

munication where each place owns an executable and listens on

a designated socket for attestation requests. This mode is what a

fielded attestation infrastructure should provide, but it requires

additional administration that is largely independent of attestation

protocol interpretation.

3.8 Appraisal
Appraisal is the process of evaluating a piece of evidence to deter-

mine if it holds the correct measurement values and is cryptograph-

ically sound. However, “correct” is a loaded term that depends on

the types of measurements requested and the appraiser’s standard.

Recalling the virus checker example, one appraiser platform may

accept a system running any one of the latest three versions of the

virus checker; a more demanding appraiser may only accept the

most up-to-date.
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Our development efforts revealed that writing general purpose

appraisers is quite difficult and raisesmany design questions. Among

these include public key management (for checking signatures),

goldenmeasurement valuemanagement (provisioning golden hashes,

storing them, etc.), nonce management, measurement policy seman-

tics, and error reporting. In our current interpreter implementation,

the appraiser is hard-coded in many places to handle a limited set

of Copland protocols. In future work we hope to address the above

design considerations and move towards formalization, perhaps

adding appraisal primitives to the Copland language proper.

3.9 JSON Message Exchange
Because interpreters must run in diverse environments and co-

ordinate with each other, it is essential that they have a shared,

standard communication mechanism for Copland terms and evi-

dence. To accomplish this the attestation manager uses the JSON

message exchange format for attestation requests and responses.

JSON is popular, lightweight, and we are aware of ongoing work

that extends [6] to build formally verified JSON parsers.

The JSON encoding of Copland terms and evidence is a straight-

forward mapping of the corresponding algebraic data types to JSON

objects. Two representative examples can be seen in Figure 8. The

general schema for encoding these ADTs is a JSON object with

a “name” field that holds the constructor name as a JSON string.

This allows a parser to distinguish a USM term and a KIM term,

for example. Finally, each constructor may have arguments that

are mapped to a “data” field that is a JSON array with an ordered

sequence of the constructor’s arguments. For recursive datatypes

like the Copland sequence terms, the recursive terms are simply

JSON objects themselves within the array of arguments.

While JSON provides a data exchange format, care must be taken

to translate JSON structures into representations appropriate in

the host language. Although Haskell is the host language discussed

here, this attestation manager must eventually communicate with

attestation managers running in Windows and seL4 [8], written

in CakeML [9] and F#, and running on Intel and ARM processors.

JSON structure processing must be done carefully and verified

to ensure data formats in each host language are respected. One

design decision made in the current implementation to support

this is encoding raw binary data such as measurement hashes as

base64-encoded JSON strings.

4 EXAMPLES
To demonstrate our interpreter and attestation manager consider

the pretty-printed Haskell Copland phrase in Figure 9. This term

encodes the virus checker example introduced earlier:

@0 (USM N0) → @1 ((CPY
π≺ (USM hash vc)) → SIG)

Running this term through the Haskell interpreter produces

the pretty-printed final evidence result in Figure 10. An outline

choosing place 0 as the outermost appraiser, interpreting this term

starting with empty initial evidence, and building the final evidence

value follows.

Upon encountering the outer LN term, the interp instance at

place 0 first descends into the left subterm, here the NONCE command.

Interpreting NONCE generates random bits via a Haskell library call

{
"name": "AT",
"data": [
< number >,
{

"name" : <T_constructor_name >,
"data" : [...]

}
]

}

{
"name": "K",
"data": [
< number >,
[< string >],
< number >,
< number >,
< string >,
{

"name": <Ev_constructor_name >,
"data": [...]

}
]

}

Figure 8: JSON schemas for AT and K.

and packages the result in the N constructor. Note that there is no
NONCE command in the formal Copland language definition; we

instead model nonce generation by the Copland term (USM N0).
This is an example of the role of our interpreter as a testing ground

for language extensions that we hope will be integrated into the

formal specification. This nonce becomes input evidence to the re-

cursive call to interp for the right subterm. The right subterm here

is an @p (t) term representing a remote request to place 1. Upon

encountering the @p (t) term, the toRemote function packages the

remainder of the protocol as a remote request to place 1, also pass-

ing along the nonce as initial evidence. The remote request message

is shown pretty-printed in its Haskell representation in Figure 11.

Besides the protocol and initial evidence terms, the request includes

some bookeeping items for the communication infrastructure: des-

tination place, source place, and a randomly-generated message id

to distinguish the ensuing response message.

Upon receiving the request from place 0, place 1 begins to in-

terpret the remainder of the protocol. Encountering the LN term,

interp again descends to its left-most subterm, here BRS (ALL,NONE)
CPY (USM 1 [‘‘target.txt’’]). The ALL evidence splitting tag

routes the nonce evidence to the CPY term, while NONE routes empty

evidence to the USM term. CPY simply copies the nonce evidence.

USM 1 [‘‘target.txt’’] triggers the USM dispatcher to invoke

the measurer with attestation service provider ID (ASP_ID) 1. The

policy for place 1 maps this ASP_ID to a measurement function

that hashes the contents of the file with the name “target.txt”. Once

CPY and USM 1 [‘‘target.txt’’] finish executing in sequence,
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LN
NONCE
@_1

LN
BRS (ALL,NONE)

CPY
USM 1 ["target.txt"]

SIG

Figure 9: Example Copland phrase (pretty-printed).

G 1
(SS
N 0 "\161_h\161..." (Mt)
U 1 ["target.txt"] 1 "G\209\251\185..." (Mt))

"\251\249a\213..."

Figure 10: Example Copland evidence (pretty-printed).

REQ "\NUL\141\..." (* REQ constructor and message ID *)
1 (* Destination place *)
0 (* Source place *)
(LN (* Copland phrase *)

BRS (ALL,NONE)
CPY
USM 1 ["target.txt"]

SIG)
N 0 "\161_h\161..." (Mt) (* Initial evidence *)

Figure 11: Request message for example protocol.

RES "\NUL\141\..." (* RES constructor and message ID *)
0 (* Destination place *)
1 (* Source place *)
(G 1 (* Evidence result *)

(SS
N 0 "\161_h\161..." (Mt)
U 1 ["target.txt"] 1 "G\209\251\185..." (Mt))

"\251\249a\213...")

Figure 12: Response message for example protocol.

the interpreter packages the result as sequential evidence. The final

protocol action at place 1 is the right-most subterm of LN, here
the SIG command. SIG uses the policy at place 1 to find its private

key (or equivalent), choose an appropriate crypto algorithm, then

generate a digital signature over the accumulated sequential evi-

dence. Finally, place 1 sends this evidence result back to place 0 as a

response message shown in Figure 12. Upon receiving the response

message, place 0 bundles the final result before proceeding with

appraisal or other actions on the evidence.

5 RELATEDWORK
The architecture for the Copland attestation manager is derived

from work by Coker Coker et al. [3]. They define an attestation

architecture where protocol execution interacts with attestation

service providers (ASPs) that perform attestation services including

measurement. Themapping ofUSM andKIM constructs in Copland

performs the same function as communicating with ASPs. Further-

more, the idea of a policy mapping USM, KIM, and other functions

is inspired by the same work. Copland policy as implemented is far

more restricted.

The original motivation for Copland is a protocol language for

the Maat [15] attestation environment. Maat provides an implemen-

tation platform for attestation protocols that serves a similar role as

the Copland attestation manager presented here. While Copland is

interpreted directly here, it is compiled into shell scripts that drive

Maat components. Our future work will include integration with

the Maat infrastructure.

Layered attestation and mutual attestation as implemented in

Copland and the Copland attestation manager is motivated by Rowe

[16, 17].

6 FUTUREWORK
The Haskell system presented here is the first attempt at imple-

menting a Copland interpreter and attestation manager. The larger

project extends this work to an ecosystem of formally verified at-

testation managers negotiating and running verified protocols on

heterogeneous platforms.

6.1 Verification
The initial Copland semantics is expressed and verified in Coq.

A denotational evidence semantics serves as the basis for the im-

plementation described here. An event semantics that defines the

behavior of Copland protocols provides a basis for exploring order-

ing among measurement operations. It also serves as a definition

of a Copland intermediate form or virtual machine. Regardless, an

important next step is verifying a Copland interpreter implementa-

tion.

The approach taken is to use CakeML as an implementation plat-

form and verify an interpreter implementation in Coq. CakeML has

a well-defined semantics captured in the Lem [13] semantic system.

A verified compiler exists for CakeML that generates binaries for

both ARM and x86 platforms from the same source with little or

no modification. Producing a verified interpreter in CakeML allows

us to provide correctness guarantees for the family of interpreters

that follow the Haskell interpreter described here.

6.2 Target Platforms
The Haskell interpreter currently targets the RedHat and Ubuntu

Linux environments. Similar capabilities are under development for

Windows 10 and seL4 [8]. The current Windows 10 implementation

is under development in F# and extends Copland to interact with a

TPM. The rationale for this is leveraging the extensive .NET support

for the TSS [20] and TPM.

The seL4 target implementation has attestation managers run-

ning both as a CAmkES [10] component and as an executable in a

seL4 virtual machine. Fielding the CakeML-based Copland inter-

preter on seL4 provides a fully verified implementation with strong

separation properties. The system may be used to host software or

as a stand-along attestation capability.
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6.3 Extensions
Copland defines a mechanism for performing and sequencing mea-

surements. While useful in its current form, extensions are planned

for lambda expressions and variables, managing nonces and keys,

and representing stateful protocols. Lambda expressions and vari-

ables are a necessary abstraction mechanism. In addition to en-

capsulating reusable functionality, lambda expressions provide a

powerful target for elaboration of other programming constructs

such as let forms. Introducing state in an attestation manager

makes many attestation functions simpler. Two such functions are

management of nonces and keys. Currently nonces are handled

in a primarily ad hoc fashion—they are simply random numbers

treated as evidence. With a stateful environment nonce values can

be maintained for simpler appraisal. Each attestation manager cur-

rently has a single key used for signing. Allowing multiple keys

will allow attestation managers to provide encryption and have

multiple aliases.

Extending the Copland interpreter’s concept of policy is both

necessary and promising. Currently, policy is a mapping of abstract

measurement descriptions to concrete implementations embedded

in the Copland interpreter. It defines what actually happens on the

implementation platform when (USM hash "/etc/passwd") exe-

cutes. Policy can be much more; allowing an appraiser to negotiate

protocols with a target. Currently, the appraiser provides a protocol

that is executed opaquely based solely on the appraiser’s identity.

Providing a richer policy allows an appraiser and target to agree

on the details of a protocol and evaluate protocols with respect to

privacy goals. To support a richer notion of policy, future attes-

tation managers must incorporate stateful capabilities that make

decisions before, during, and after interpreting individual Copland

phrases.

Finally, we are working to develop a type system for Copland

terms. This type system currently considers substructural typing

techniques [21] for statically checking common correctness con-

ditions. Specifically considered are measurement ordering, nonce

handling, and session key management.

7 CONCLUSIONS
Copland is a domain specific language targeting development and

execution of attestation protocols. This work opens by describ-

ing the motivation for developing such a language, providing an

overview of its syntax and semantics, and providing a collection

of motivating examples. Next it describes the first Copland im-

plementation as an interpreter written in Haskell. Details of an

attestation manager written around Copland are described as well

as mechanisms for implementing communication, measurement,

and sequencing. The work closes with a description of next steps

and goals of the Copland community.
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