
Design and Formal Verification of a
Copland-based Attestation Protocol

Adam Petz

Information and Telecommunication

Technology Center,

The University of Kansas

Lawrence, KS, USA

ampetz@ku.edu

Grant Jurgensen

Information and Telecommunication

Technology Center,

The University of Kansas

Lawrence, KS, USA

gajurgensen@ku.edu

Perry Alexander

Information and Telecommunication

Technology Center,

The University of Kansas

Lawrence, KS, USA

palexand@ku.edu

ABSTRACT
We present the design and formal analysis of a remote attestation

protocol and accompanying security architecture that generate ev-

idence of trustworthy execution for legacy software. For formal

guarantees of measurement ordering and cryptographic evidence

strength, we leverage the Copland language and Copland Virtual

Machine execution semantics. For isolation of attestation mecha-

nisms we design a layered attestation architecture that leverages

the seL4 microkernel. The formal properties of the protocol and

architecture together serve to discharge assumptions made by an

existing higher-level model-finding tool to characterize all ways

an active adversary can corrupt a target and go undetected. As

a proof of concept, we instantiate this analysis framework with

a specific Copland protocol and security architecture to measure

a legacy flight planning application. By leveraging components

that are amenable to formal analysis, we demonstrate a principled

way to design an attestation protocol and argue for its end-to-end

correctness.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Trust frame-
works; Domain-specific security and privacy architectures.

KEYWORDS
remote attestation, formal methods, verification

ACM Reference Format:
Adam Petz, Grant Jurgensen, and Perry Alexander. 2021. Design and Formal

Verification of a Copland-based Attestation Protocol. In 19th ACM-IEEE
International Conference on Formal Methods and Models for System Design
(MEMOCODE ’21), November 20–22, 2021, Beijing, China. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3487212.3487340

This work is funded in part by the NSA Science of Security initiative contract #H98230-

18-D-0009 and Defense Advanced Research Project Agency contract #HR0011-18-9-

0001. The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed or

implied, of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMOCODE ’21, November 20–22, 2021, Beijing, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9127-6/21/11. . . $15.00

https://doi.org/10.1145/3487212.3487340

1 INTRODUCTION
A common goal for communicating systems is trust where we say
that principal 𝐵 trusts 𝐴 if it can strongly identify 𝐴 and either

directly observe 𝐴 behaving as expected or indirectly observe 𝐴

through a trusted third party. Semantic remote attestation [4, 5] is

one mechanism supporting trust establishment. In remote attesta-

tion an appraiser (𝐵) requests an attestation from a remote target
(𝐴). The target responds by performing the requested attestation

and returning evidence of its state to the appraiser. The appraiser
assesses the evidence and chooses whether to trust the remote

system.

This work centers on hardening a legacy system into one where

trust can be established and maintained over time. Remote attesta-

tion is added to a UAV control system to establish trust between

the UAV and a ground station providing waypoints for navigation.

Formal methods–proof and model finding–are leveraged through-

out the retrofit process to ensure correctness in the resulting sys-

tem. The goal being demonstrating the use of formal methods in

system design involving multiple components, requirements, and

constraints.

Working with colleagues at MITRE, JHUAPL and NSA we have

developed Copland [17] for representing, reasoning about, and

executing remote attestation protocols. Copland specifies atomic

measurements for gathering evidence, mechanisms for sequenc-

ing measurements, and remote measurement requests for layering

attestation. Copland has a well-defined formal semantics for execu-

tion specifying the structure of cryptographic evidence produced

and the precise order measurement activities are performed.

In prior work we defined Copland’s formal semantics [17], de-

fined and verified an execution environment for Copland that abides

by the formal semantics [15], and illustrated usage patterns for lay-

ered attestation [6]. In this work we introduce a novel workflow

for the formal analysis of Copland-based attestation protocols and

demonstrate that workflow on a specific Copland protocol and secu-

rity architecture for a UAV/Groundstation demonstration platform.

2 COPLAND
The primary aims of the Copland framework [1, 6, 7, 14–17, 19] are

to support the specification, execution, and analysis of layered at-

testation protocols. Protocols are specified as language terms called

phrases, which serve as input to both execution and analysis alike.

During execution phrases are interpreted to invoke local measure-

ment routines, request remote measurements, and bundle evidence

results cryptographically. During analysis phrases denote a precise

https://doi.org/10.1145/3487212.3487340
https://doi.org/10.1145/3487212.3487340

MEMOCODE ’21, November 20–22, 2021, Beijing, China Adam Petz, Grant Jurgensen, and Perry Alexander

measurement ordering and cryptographic evidence structure that,

if upheld by an execution, constrains an adversary by the attacks it

can perform and go undetected by attestation.

While complete descriptions of the Copland language and its

semantics can be found elsewhere [1, 17]we describe here onlywhat

is relevant to understand the phrases presented in this work. The

most primitive term in Copland concrete syntax is a measurement
and is a triple of the form: (S Q T) where S and T are symbols

representing the measurement agent and target of measurement,

respectively, and Q the place where T resides. As an example, the

phrase:

(comp_hash Q dir)

is the composite hash, comp_hash, measurement performed over

the contents of directory dir residing at place Q.
A simple extension to this protocol is:

(comp_hash Q dir) -> !

where the resulting hash evidence is sent to the signature operator,

!, that signs it with a cryptographic key local to place Q. In Copland,

a place is an abstract identifier for an attestation manager, and each

place has an associated key used for signing evidence. The protocol

where place P asks place Q to perform and sign a composite hash

has the form:

P: @Q [(comp_hash Q dir) -> !]

The notation P: indicates P is the top-level place where this

protocol is orchestrated and appraised. The @Q operator indicates a

request to Q to execute measurements on P’s behalf. The result at P
is a composite hash of dir at Q, both performed and signed by Q.
This evidence can be appraised by checking the signature with Q’s
public key and comparing the hash with a known golden value.

3 COPLAND ANALYSIS FRAMEWORK
In prior work we developed a formally-verified execution envi-

ronment for Copland phrases called the Copland Virtual Machine

(CVM) [13, 15]. A crucial property of CVM execution is that it emits

measurement event traces and cryptographic evidence which are

both faithful to the Copland reference semantics. Here we also

consider the security architecture of the platform hosting a CVM,

and how formal properties of the CVM and its architecture bolster

the soundness of a higher-level automated analysis.

Figure 1 shows our general framework for analyzing and execut-

ing an arbitrary Copland phrase 𝑡 . The Appraiser platform takes 𝑡 as

input and relies on a stateful execution environment introduced in

Petz et al. [15] to generate and remember a random nonce, construct

an attestation session around that nonce, and perform appraisal

over the evidence result. The Target platform leverages the CVM

to carry out the request and emits an Event Trace guaranteed to

respect a strict partial ordering of attestation-relevant events called

an Event System, derived statically from 𝑡 .

Alongside the CVM on the Target platform, measurement com-

ponents𝑚1,𝑚2, ..., and target applications 𝑎𝑥 , 𝑎𝑦 , ..., operate within

a Security Architecture depicted in Figure 1 by dotted green lines

around components. Our analysis framework remains parameteri-

zable over such means of isolation that protect trusted measurers

from their potentially-untrusted targets. This supports dropping

in alternative isolation mechanisms as deemed appropriate by the

Target

m1

Appraiser

n <- gen_nonce ;
req (t, n)

Appraisal EvidenceAtt

CVM

m2

ax ay

…

…

EvidenceApp

Trust Decision

Event Trace

A C B D E

Event System

A

B C

D

E

Respects
(NFM ‘21)

Copland Phrase: t
Emits

A

E

B C

D

E

R A

E

B C

D

E

R A

B C

D
D

R

R

E

A

E

B C

D

E

R

R

C
hase

Denotes

A

B C

D
D

R

R

E

M
itigates

Security
Architecture

Config/Policy

Figure 1: Copland Verification Architecture

consumer of a particular attestation. In Section 4 we instantiate

a concrete measurement architecture that leverages the formally-

verified seL4 microkernel [8] for component separation.

Our higher-level analysis leverages a model-finding tool devel-

oped by our collaborators at MITRE instrumented explicitly to

analyze Copland-based protocols [19]. Given a Copland phrase 𝑡

and an indication of the measurement target(s) of interest, the tool

produces an initial set of models that describe all distinct ways

an active adversary could corrupt the target and go undetected

by measurement. This initial analysis relies on existing axioma-

tizations of Event Systems and an adversary that are encoded as

first-order logical statements understood by the underlying Chase

[18] model-finder. The encoding of Event Systems characterizes

honest measurements derived directly from 𝑡 , while the adversar-

ial model encodes rules of a capable attacker that can arbitrarily

corrupt and repair the very same measurement components.

One of the goals of a well-designed attestation system is that

it should place a high as possible burden on the attacker[20, 21].

Towards this goal, our analysis framework incorporates additional

constraints to reflect properties of the security architecture, elimi-

nating certain classes of attack from consideration. More concretely,

we encode architectural properties as logical assumptions to the

model finder to indicate corruptibility based on the integrity of

individual components and their contextual dependencies. With

measurement protocol and architectural assumptions incorporated,

the attackmodels that remainmust be acceptable to the consumer of

attestation. Otherwise, an iteration to refactor the Copland protocol

and accompanying security architecture may be in order.

Design and Formal Verification of a
Copland-based Attestation Protocol MEMOCODE ’21, November 20–22, 2021, Beijing, China

4 DEMONSTRATION PLATFORM
Our demonstration platform is an Un-piloted Air Vehicle (UAV)

system taken from our work on the DARPA CASE program. We

start with a pre-existing legacy implementation, extend it to support

layered attestation built with Copland Attestation Managers, and

formally analyze the resulting system. The transformed architecture

exhibits desirable security properties that we can leverage as sound

assumptions in the analysis framework from Figure 1.

The scenario features two communicating systems, a ground

station and a UAV. The UAV accepts flight plans from the ground

station in the form of waypoints and attempts to navigate within

security constraints. Both the ground station and UAV run pre-

existing UxAS [2] software, running in Linux. In the un-hardened

system the UAV has no assurance that the ground station it accepts

directions from is trustworthy. The UAV has no means of distin-

guishing a compromised or fake ground station from a genuine,

trustworthy one. To address these concerns, we extend the two

systems to support Copland attestation protocols.

4.1 Transformation of the UAV
In the hardened architecture, the UAV is augmented with a filter,

paired with a Copland Attestation Manager (AM). The filter in-

tercepts communication between the ground station and the UAV

flight planner, forwards messages from trusted ground stations,

and drops messages from un-trusted ones, as determined by the

attestation manager. For a ground station that is neither trusted nor

un-trusted, the attestation manager will send it a Copland attes-

tation request. If the ground station responds with corresponding

evidence, then the attestation manager will appraise the evidence

and provide a trustworthy/non-trustworthy decision to the filter.

This extended UAV system is presented in Figure 2.

Linux

Flight PlannerFilter

Commands

AM

Place Appraisal Result

Request

Evidence

Figure 2: Hardened UAV Architecture

4.2 Transformation of the ground station
Where the UAV had to be extended to support appraisal, the ground

station must be extended to support attestation, requiring more

substantial architectural changes to the system. First, we add a

Copland Attestation Manager to the Linux environment running

UxAS. This AM is outfitted with a number of Linux measurement

procedures and UxAS-specific measurers to support attestation. As

such, it is primarily responsible for monitoring the authenticity of

the legacy ground station software and its outgoing messages.

Unfortunately, trust in this AM is necessarily limited by its po-

sition in the Linux environment. It is running in the same Linux

userspace as its target, UxAS. It cannot be trusted to unearth deeply

embedded threats such as a rootkit from the Linux userspace be-

cause we cannot guarantee sufficient separation between the AM

and the equally privileged malicious actor. Such an actor could

tamper with the AM’s measurements, or even steal its private key

and impersonate it outright.

For this reason, we virtualize the Linux environment, and add

another layer to the system. In this new model, the ground station

runs the seL4 microkernel, with two components. One is a virtual

machine manager, hosting the aforementioned Linux environment.

The other component is an additional attestation manager. To dis-

tinguish the two, we refer to the attestation manager running in

the Linux environment as the UserAM, and the attestation man-

ager running at the seL4 level as the PlatformAM, both depicted in

Figure 3.

Linux VM

UxAS

Commands

UserAM

Measurement

Request

Evidence

seL4

PlatformAM

Request Evidence Measurement

Figure 3: Hardened Ground Station Architecture

Introduction of the seL4 layer allows the PlatformAM to exter-

nally conduct measurements of the vulnerable Linux environment.

Crucially, seL4 possesses strong memory separation capabilities

which prevents a compromised and malicious Linux kernel from

interfering with the PlatformAM’s measurements. These memory

access controls are part of the specification of seL4 that has been

formally verified, allowing for provably-separate components [9].

The two attestation managers work together in a layered attes-

tation paradigm. The UserAM can make granular measurements

easily from within the Linux environment, while the PlatformAM

can attest to the healthiness of the Linux VM as a whole. In this

sense, the PlatformAM extends its increased trustworthiness to the

UserAM by measuring its Linux environment.

Finally, we must consider what supports the trustworthiness

of the PlatformAM and the seL4 layer. The memory separation

properties of seL4 are static guarantees, thus we trust this layer

MEMOCODE ’21, November 20–22, 2021, Beijing, China Adam Petz, Grant Jurgensen, and Perry Alexander

so long as the correct seL4 image boots. To accomplish this, we

need to anchor our trust in some hardware-based root-of-trust.

This evidence will necessarily be hardware-specific. For our design

purposes, we assume that the boot process leaves some evidence

token available to the PlatformAM which convincingly indicates

the proper seL4 image booted.

5 TRANSFORMED UAV PLATFORM ANALYSIS
In this section we instantiate the Copland Verification Architecture

of Figure 1 to analyze the UAV attestation scenario. We begin by

describing a Copland phrase and its components, then derive its

honest measurement events from the CVM semantics that serve

as input to analysis. For analysis we encode increasingly strong

properties of the groundstation security architecture, inspect the

generated attack models, and finally consider tradeoffs between al-

ternative measurement strategies that differ in depth and frequency.

5.1 Copland Phrase Description/Components
ACopland phrase to measure the transformed ground station target

platform appears in Figure 4. The phrase begins with: ∗heliAM, n :

which designates heliAM (the UAV AM component from Figure 2)

as the appraising place and also specifies a nonce n be passed as

initial evidence with the attestation request. Next, @userAM[...]
specifies that the terms inside [...] be executed at the userAM place.

userAM and platAM are place identifiers that represent distinct

attestation domains both running on the remote ground station

(UserAM and PlatformAM from Figure 3).

As soon as userAM receives the initial request, @platAM[...]
specifies that it initiate a request to the (more privileged) Platform

AM. platAM starts by invoking query_img to read the contents of

the seL4 image img loaded at boot-time into protected memory.

This image serves as evidence of the static configuration of all

components on the ground station platform at startup. The abstract

nature of places in Copland allows us to represent this protected

memory region as its own place identifier bootMem that will be

incorporated into analysis.

After querying the image, platAM performs cross-domain mea-

surements of components at userAM. One is (kim userAM ker) that
specifies an integrity measurement of the linux OS kernel running

at userAM. The other is (uim userAM uam) that specifies an in-

tegrity measurement of the uam (Userspace Attestation Manager)

component that itself performs more specialized measurements of

UxAS. The +~+ operator specifies that both of its subterms may

execute in parallel, whereas -> requires strict linear sequencing.
After receiving evidence of platform integrity from platAM,

userAM proceeds to perform specialized measurements of the tar-

get application. These measurements perform dynamic monitoring

of the execution context of the UxAS flight planning software and

UxAS itself. After completing its measurement, userAM signs the

accumulated evidence bundle and sends it in a response back to

heliAM.

5.2 Event Semantics
Figure 5 shows the Event System, a partial ordering on measure-

ment events, determined by the Copland phrase in Figure 4. This

*heliAM, n:
@userAM [

@platAM [(query_img bootMem img) ->
((kim userAM ker)

+~+
(uim userAM uam)) -> !

] ->
((uam userAM uxas_ctxt)

+~+
(uam userAM uxas)) -> !
]

Figure 4: UAV Copland Phrase

Figure 5: Event System derived from the Copland phrase in
Figure 4 above.

l(E) = msp(userAM, e, uam, userAM, uxas)

=> prec(E,E2) &

phi(userAM, uxas, E2) | phi(userAM, uxas_ctxt, E2).

Figure 6: Assume adversary avoids detection at main mea-
surement event.

graphical output comes from the model finder tool, but an identical

partial ordering can be derived from the Copland formal semantics

in Coq. This ordering states that the boot image is queried first,

followed by the integrity measurements launched from platAM.

The integrity measurements are free to execute in any order, but

must complete before the specialized userspace measurements at

userAM begin. This event ordering is the first input into the au-

tomated attack analysis in the model finder, and its soundness is

justified by the Copland Virtual Machine that is formally verified

to uphold such measurement orderings.

5.3 Architectural Assumptions
Given the measurement events in Figure 5, the model finding tool

requires additional assumptions about the environment in which

these measurements are carried out before it can produce a mean-

ingful analysis. The first of these is an indication of themeasurement
event(s) of interest. In other words, the instant(s) during attestation

where we would like to determine if the adversary has sufficiently

corrupted a specific target while avoiding detection. Figure 6 shows

this statement for our UAV attestation scenario, encoded in first-

order syntax accepted by the model finder. This logical statement

asks for models where either uxas or something in its execution

context uxas_ctxt are corrupt (phi predicate) after the event where
uam measures uxas.

Design and Formal Verification of a
Copland-based Attestation Protocol MEMOCODE ’21, November 20–22, 2021, Beijing, China

Figure 7: One attack model: corruption and repair of uam

% No dependencies for components at bootMem or platAM

ctxt(bootMem, C, C2) => false.

ctxt(platAM, C, C2) => false.

Figure 8: Contextual assumptions about “deep” components
in the architecture.

Given only honest measurement events and this event of interest,

the model finder will generate an exhaustive set of attack models

assuming a capable adversary that can corrupt and repair arbitrary

components on the system. One such model appears in Figure 7.

Here we see the adversary has corrupted the userspace AM (uam)

after it was measured, and leveraged it to lie about the corrupted

state of uxas_ctxt. It later covers its tracks by repairing uam. In

total, the tool generates 74 essentially distinct attack models like this.

Because many of these attacks are unacceptable, analysis like this

early in the design of an attestation protocol is useful to pinpoint

parts of the system that may require hardening.

Further assumptions come from properties about dependencies

of components and the architecture where they operate. The state-

ments in Figure 8 encode that components at bootMem and platAM
do not depend on any other components for their own integrity.

Without assumptions like these the analysis conservatively assumes

that for each component, there exists an arbitrary component co-

resident at its place capable of affecting its integrity. Each of these

statements are justified by trust in specific components and their en-

vironment: bootMem is a protected storage location; measurement

components at platAM run in an isolated, native seL4 environment

with limited dependencies and limited-purpose code.

Statements in Figure 9 encode additional assumptions about

the corruptibility of components. The first says that only way to

corrupt a component at platAM is by corrupting img at bootMem.

The final two statements say that the boot image cannot become

corrupted, and that the only way for uam to become corrupted is

via a corrupted OS kernel. The first of these is justified by protecting

the image somewhere like trusted hardware or a dedicated seL4

component, where only highly-priviledged bootloader code has

write access. To justify the latter, in our prototype we limit the code

of uam to very specific measurement functions and include them

as a library packaged with the Copland Virtual Machine at userAM.

Figure 10 lists four final assumptions that eliminate most of the

remaining feasible attack models. The first three make explicit the

% platAM components only corrupted via a corrupt boot image

l(E) = cor(platAM, C) => phi(bootMem, img, E).

%% img in bootMem cannot be corrupted

phi(bootMem, img, E) => false.

% user AM (uam) only corrupted via a corrupt kernel

l(E) = cor(userAM, uam) => phi(userAM, ker, E).

Figure 9: Assumptions about the “corruptibility” of compo-
nents.

% All components at userAM (except ker itself)

% depend on ker

ctxt(userAM, C, uam) => C = ker.

ctxt(userAM, C, uxas_ctxt) => C = ker.

% In addition to ker, uxas depends also on uxas_ctxt

ctxt(userAM, C, uxas) => C = ker | C = uxas_ctxt.

% Ignore attacks that corrupt ker

l(E) = cor(userAM, ker) => false.

Figure 10: Final Architecture Assumptions

Figure 11: Final Attack Model

context of the remaining components in userspace. The final as-

sumption ignores attacks on the kernel. Because dynamic attacks on

OS kernels are feasible in practice, one could remove this assump-

tion to explore the implications of such an attack. However, for our

final analysis we assume that the (kim userAM ker) measurement

lauched from platAM gives sufficient evidence that the kernel will

run uncorrupted long enough for the other measurements that

depend on it to complete.

Given all of the above assumptions, the attack model in Figure 11

characterizes one of the two remaining ways to corrupt uxas and

go undetected (an analogous model exists for corrupting uxas_ctxt).
Specifically, the adversary must corrupt uxas (or its context) af-
ter they are measured and before the flight planning services are

consumed. This is an example of a recent or time-sensitive attack

that is in theory more difficult to execute[21]. In what follows, we

discuss strategies for making these types of attacks more difficult

still by repeated measurement, thus justifying them as acceptable

attack models.

MEMOCODE ’21, November 20–22, 2021, Beijing, China Adam Petz, Grant Jurgensen, and Perry Alexander

5.4 AM Monad alternatives
From the appraiser’s perspective a Copland protocol is executed

atomically before evidence bubbles back to its environment.While it

is possible to craft standalone phrases that are sufficient for simple,

static attestation scenarios, there are cases where an appraiser

might desire more flexibility to orchestrate the execution of multiple

Copland phrases and compose intermediate evidence results. Pure

Copland has no persistent state and no error handling mechanism

to account for failed or divergent attestations. To address these

issues we define the Attestation Manager (AM) Monad as a standard

state monad with exceptions with a formal definition in Coq [13]

and prototype implementations in CakeML and Haskell[7, 16].

An example computation in the AM Monad called attest_gs
that prepares, executes, and appraises a Copland phrase from the

UAV scenario is as follows:

attest_gs t :=
do {n <- generateNonce;

ev <- run_cvm(n,t);
b <- appraise n t ev;
update_filter(b)}

For flexibility, we parameterize attest_gs by the Copland phrase

used to measure the groundstation target. Assuming the Copland

phrase from earlier in Figure 4 is assigned the name case_cop,
we could instantiate this AM Monad computation via function

application: attest_gs case_cop.
Recall from earlier that even with architectural protections and

bottom-up measurement strategies, an adversary can escape de-

tection by performing timely attacks on components after they

are measured. One way to make these attacks less effective is to

perform periodic re-measurement of the system:

do_while(true) (
attest_gs case_cop;
sleep(s))

Here s is within some time interval chosen by the appraiser to make

attack and repair of the target difficult for the adversary. Depending

on the scenario and capabilities of the attacker, s could be bounded

under a certain threshold, or even randomly generated within an

acceptable range.

However, a problem arises if the time required to complete all

measurements of the phrase exceeds s. Recall that the case_cop
phrase involves measurements of deep components that might re-

quire significant time and system resources to carry out. In real-time

embedded systems with hard scheduling requirements, attestation

services might be given constrained resources (i.e. CPU time) to

complete measurement tasks [3]. This limitation may be at odds

with deeper measurements that tend to stall or freeze the system to

capture its state. When full appraisals are too costly, it may be that

performing one deep measurement of the system during initializa-

tion followed by repeated, shallow probes is sufficient to establish a

baseline and maintain evidence of integrity. Partitioning the phrase

into its deep and shallow portions has the form:

case_deep :=
@userAM [@platAM [(query_img bootMem img) ->

((kim userAM ker)
+~+

(uim userAM uam)) -> !]]

case_shallow :=
@userAM [((uam userAM uxas_ctxt)

+~+
(uam userAM uxas)) -> !]

A final AM Monad computation that performs a deep attestation

of the ground station at frequency s, and shallow attestations at

frequency r is as follows:

do_while(true) (
attest_gs case_deep;
do_for_duration(s) (

attest_gs case_shallow;
sleep(r)

)
)

6 RELATEDWORK
Nunes et. al. [10] developed VRASED (Verifiable Remote Attestation

for Simple Embedded Devices) that uses LTL to verify end-to-end

security and attestation soundness by composing properties of Ver-

ilog hardware specifications and cryptographic software. APEX

[11] extends VRASED’s security architecture to support unforge-

able remote proofs of execution (PoX) on low-end devices. These

efforts achieve convincing end-to-end security guarantees for a

fixed embedded platform. In contrast, our Copland-based analy-

sis supports diverse, layered attestation scenarios and alternative

protocol/architecture designs with respect to a powerful adversary.

Sardar et. al. formally specify and verify properties of specialized

attestation primitives used in Intel’s SGX and TDX technologies [22–

24]. They encode the protocol primitives as models in the ProVerif

tool and perform symbolic analysis over the protocols with respect

to a Dolev-Yao adversary.

Rowe’s work on analysis of layered attestation protocols charac-

terizes formally howmeasurement and evidence bundling strategies

force an adversary to perform more difficult deep or recent attacks

[20, 21]. Besides influencing the design of our UAV attestation pro-

tocol and architecture, the formalizations in this work underly the

proofs of soundness for both honest and adversarial axiom exten-

sions to the Chase model finder that we rely on for analysis [19].

Helble et. al. [6] demonstrate the complexity of the design space for

Copland-based attestation protocols and motivate our frameowrk

for analysis. On the implementation side, Maat [12] is of note as

an attestation framework that motivated the design of the Copland

language[17] and the Copland virtual machine[15].

The model finder tool was recently released publicly as part of

the Copland Collection [1] and is described in depth in a recent pub-

lication [19]. The tool instruments the more general Chase model

finder [18] with specialized axioms encoding the semantics of Cop-

land measurement and the behavior of active adversaries that can

corrupt and repair components involved in Copland attestations.

Design and Formal Verification of a
Copland-based Attestation Protocol MEMOCODE ’21, November 20–22, 2021, Beijing, China

7 CONCLUSION
In this work we describe a prototypical system-level design pro-

cess that integrates formal methods at critical decision points. The

system-level goal is integrating a remote attestation system into a

legacy system to establish trustworthiness. The formally verified

Copland language and Copland Virtual Machine are used to define

an attestation protocol and its semantics. The Attestation Manager

Monad situates the protocol in an execution environment providing

nonce management, appraisal, and measurement frequency. Lever-

aging properties of these verified components, MITRE’s model

finder tool enumerates allowed behaviors of an adversary to help

in refining the attestation protocol. The result of this work is not

a proof-of-correctness in a single formal tool, but a collection of

evidence from multiple tools integrated into a design process that

can be revisited as the UAV system changes or applied to alter-

nate designs. The future of Copland and our design tools includes

synthesis of implementations from Coq, integration of hardware-

based static measurements, and generalizing our approach to other

attestation architectures.

REFERENCES
[1] Copland website. https://ku-sldg.github.io/copland, 2021.

[2] Balachandran, S., Muñoz, C. A., Consiglio, M. C., Feliú, M. A., and Patel,

A. V. Independent configurable architecture for reliable operation of unmanned

systems with distributed onboard services. In 2018 IEEE/AIAA 37th Digital
Avionics Systems Conference (DASC) (2018), pp. 1–6.

[3] Clemens, J., Pal, R., and Sherrell, B. Runtime state verification on resource-

constrained platforms. In MILCOM 2018 - 2018 IEEE Military Communications
Conference (MILCOM) (2018), pp. 1–6.

[4] Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B.,

Ramsdell, J., Segall, A., Sheehy, J., and Sniffen, B. Principles of remote

attestation. International Journal of Information Security 10, 2 (June 2011), 63–81.
[5] Haldar, V., Chandra, D., and Franz, M. Semantic remote attestation – a virtual

machine directed approach to trusted computing. In Proceedings of the Third
Virtual Machine Research and Technology Symposium (San Jose, CA, May 2004).

[6] Helble, S., Kretz, I., Loscocco, P., Ramsdell, J., Rowe, P., and Alexander, P.

Flexible mechanisms for remote attestation. ACM Transactions on Privacy and
Security (to appear).

[7] Jurgensen, G., Petz, A., Alexander, P., Barclay, T., Komp, E., Neises, M., and

Cousino, A. A copland attestation manager (am) in cakeml. https://github.com/

ku-sldg/am-cakeml, 2021.

[8] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,

Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,

H., and Winwood, S. sel4: formal verification of an operating-system kernel.

Commununications of the ACM 53, 6 (2010), 107–115.
[9] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,

Lewis, C., Gao, X., and Klein, G. sel4: From general purpose to a proof of

information flow enforcement. In 2013 IEEE Symposium on Security and Privacy
(2013), pp. 415–429.

[10] Nunes, I. D. O., Eldefrawy, K., Rattanavipanon, N., Steiner, M., and Tsudik,

G. Vrased: A verified hardware/software co-design for remote attestation. In

Proceedings of the 28th USENIX Conference on Security Symposium (USA, 2019),

SEC’19, USENIX Association, pp. 1429–1446.

[11] Nunes, I. D. O., Eldefrawy, K., Rattanavipanon, N., and Tsudik, G. APEX: A

verified architecture for proofs of execution on remote devices under full software

compromise. In 29th USENIX Security Symposium (USENIX Security 20) (Aug.
2020), USENIX Association, pp. 771–788.

[12] Pendergrass, J. A., Helble, S., Clemens, J., and Loscocco, P. A platform service

for remote integrity measurement and attestation. In MILCOM 2018 - 2018 IEEE
Military Communications Conference (MILCOM) (2018), pp. 1–6.

[13] Petz, A. copland-avm, nfm21 release. https://github.com/ku-sldg/copland-

avm/releases/tag/v1.0, 2020.

[14] Petz, A., and Alexander, P. A copland attestation manager. In Hot Topics in
Science of Security (HoTSoS’19) (Nashville, TN, April 8-11 2019).

[15] Petz, A., and Alexander, P. An infrastructure for faithful execution of remote

attestation protocols. InNASA FormalMethods (Berlin, Heidelberg, 2021), A. Dutle,
M. M. Moscato, L. Titolo, C. A. Muñoz, and I. Perez, Eds., vol. 12673 of Lecture
Notes in Computer Science, Springer International Publishing, pp. 268–286.

[16] Petz, A., and Komp, E. haskell-am. https://github.com/ku-sldg/haskell-am, 2020.

[17] Ramsdell, J., Rowe, P. D., Alexander, P., Helble, S., Loscocco, P., Pendergrass,

J. A., and Petz, A. Orchestrating layered attestations. In Principles of Security
and Trust (POST’19) (Prague, Czech Republic, April 8-11 2019).

[18] Ramsdell, J. D. Chase: A model finder for finitary geometric logic. https:

//github.com/ramsdell/chase, 2020.

[19] Rowe, P., Ramsdell, J., and Kretz, I. Automated trust analysis of copland

specifications for layered attestations. In Principles and Practice of Declarative
Programming (PPDP 21) (Sept. 2021).

[20] Rowe, P. D. Bundling Evidence for Layered Attestation. In Trust and Trustworthy
Computing. Springer International Publishing, Cham, Aug. 2016, pp. 119–139.

[21] Rowe, P. D. Confining adversary actions via measurement. Third International
Workshop on Graphical Models for Security (2016), 150–166.

[22] Sardar, M. U., Faqeh, R., and Fetzer, C. Formal foundations for intel SGX data

center attestation primitives. In Formal Methods and Software Engineering - 22nd
International Conference on Formal Engineering Methods, ICFEM 2020, Singapore,
Singapore, March 1-3, 2021, Proceedings (2020), S. Lin, Z. Hou, and B. P. Mahony,

Eds., vol. 12531 of Lecture Notes in Computer Science, Springer, pp. 268–283.
[23] Sardar, M. U., Musaev, S., and Fetzer, C. Demystifying attestation in intel trust

domain extensions via formal verification. IEEE Access 9 (2021), 83067–83079.
[24] Sardar, M. U., Quoc, D. L., and Fetzer, C. Towards formalization of enhanced

privacy ID (epid)-based remote attestation in intel SGX. In 23rd Euromicro
Conference on Digital System Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020
(2020), IEEE, pp. 604–607.

https://ku-sldg.github.io/copland
https://github.com/ku-sldg/am-cakeml
https://github.com/ku-sldg/am-cakeml
https://github.com/ku-sldg/copland-avm/releases/tag/v1.0
https://github.com/ku-sldg/copland-avm/releases/tag/v1.0
https://github.com/ku-sldg/haskell-am
https://github.com/ramsdell/chase
https://github.com/ramsdell/chase

	Abstract
	1 Introduction
	2 Copland
	3 Copland Analysis Framework
	4 Demonstration Platform
	4.1 Transformation of the UAV
	4.2 Transformation of the ground station

	5 Transformed UAV Platform Analysis
	5.1 Copland Phrase Description/Components
	5.2 Event Semantics
	5.3 Architectural Assumptions
	5.4 AM Monad alternatives

	6 Related Work
	7 Conclusion
	References

