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ABSTRACT
In distributed systems, trust decisions are often based on remote

attestations in which evidence is gathered about the integrity of

subcomponents. Layered attestations leverage hierarchical depen-

dencies among the subcomponents to bolster the trustworthiness

of evidence. Copland is a declarative, domain-specific language for

specifying complex layered attestations. How phrases are composed

bears directly on the trustworthiness of the evidence they produce,

and complex phrases become quite difficult to analyze by hand. We

introduce an automated method for analyzing executions of attes-

tations specified by Copland phrases in an adversarial setting. We

develop a general theory of executions with adversarial corruption

and repair events. Our approach is to enrich the Copland semantics

according to this theory. Using the model finder Chase, we char-

acterize all executions consistent with a set of initial assumptions.

From this set of models, an analyst can discover all ways an active

adversary can corrupt subcomponents without being detected by

the attestation. These efforts afford trust policymakers the ability

to compare attestations expressed as Copland phrases against trust

policy in a way that encompasses both static and runtime concerns.
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1 INTRODUCTION
Network-based communication among computing devices increas-

ingly relies on a notion of trust to inform the nature of their inter-

actions. Remote attestation is a technique for allowing one entity

(the target of attestation) to provide evidence of its trustworthiness

to a peer (the appraiser of an attestation). It consists, in part, of

processes on the target system that gather evidence by performing

integrity measurements of various components of the target sys-

tem. The evidence generated about these components is bundled

together and transmitted to a remote peer who can appraise the
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evidence. The result of the appraisal can form an input to a trust

decision that will govern how the network interaction will proceed.

For example, a remote attestation may serve to provide a corporate

VPN gateway with sufficient evidence that a machine wishing to

join the network is free of malware and that it conforms to the

corporate configuration before access is granted.

Remote attestation faces the following interesting dilemma. If the

appraiser is distrustful of the target to begin with, why should the

appraiser be any more trustful of the target to faithfully gather and

report accurate evidence? The answer typically lies in the layered

dependencies among components of the target system.

To illustrate what we mean, consider a simple hypothetical attes-

tation scenario. Alice is logged into her bank’s website and attempts

to initiate a high-value transfer of money out of her account. The

nature of this transaction prompts the bank to ask Alice to confirm

her credentials, perhaps via two-factor authentication. But it could

also prompt the bank to initiate an attestation of Alice’s system so

that it can trust there is no malware present (perhaps in the form

of a malicious browser extension) that might have hijacked the

session to initiate transactions on Alice’s behalf. Of course Alice

herself would be willing to reveal some extra information about

the current state of her system due to the sensitive nature of the

transaction. One approach the bank might take is to develop its

own browser extension that can list the other extensions present

and compare against a whitelist of approved extensions, refusing

the transaction if it sees an extension it does not know or trust.

However, an adversary able to install a malicious extension may

be just as capable of disabling or corrupting the bank’s extension.

It would be more trustworthy to inspect the browser from outside

the browser itself with some special-purpose application.

This may prompt some readers to become skeptical of the trust-

worthiness of this special-purpose application. For similar reasons,

most of the research on remote attestation has focused on how to

build trust from the ground up starting in hardware. Hardware is

considered significantly harder to compromise than software, so

it can provide a strong root of trust for performing and storing

integrity measurements. The development of the Trusted Platform

Module [9] and Intel’s Software Guard Extensions (SGX) [10] repre-

sent prominent products in this area. However, hardware is also less

flexible than software. This has led to hardware-based attestation

solutions that focus primarily on boot-time integrity measurements

at the expense of runtime integrity.

Virtualization technologies such as Xen [1] or Microsoft’s Hyper-

V [25] are good examples of approaches that can provide strong

support for software-based runtime integrity measurement. They

offer a place for measurers to stand that is better protected than the

environment of the target they are measuring. They contribute to

https://doi.org/10.1145/NNNNNNN.NNNNNNN
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a layered architecture in which more privileged functions benefit

from the protection offered by lower layers of the system. Such

architectures can combine the benefits of hardware roots of trust

with the flexibility afforded by software mechanisms. This suggests

an approach to the bank scenario described above in which trust is

built from the ground up, starting with hardware and moving up

through firmware, hypervisor, and kernel to support the top-level

inspection of the browser extensions.

Such an attestation would offer strong evidence of the integrity

of the browser extensions, but it may appear to some as a lot of

work to generate integrity evidence for a simple property. On the

other hand, the assurance gained by pushing trust all the way down

to hardware could be well worth it for a more high-stakes property.

So it is desirable to support the ability to adjust the level of trust

required and tailor it to the situation.

Indeed, an attestation can be strengthened in layered architec-

tures even without going all the way down to hardware. Previous

work has established a model and a set of reasoning principles for

the analysis of layered attestations focused on runtime measure-

ments [21]. These principles support the notion that the trustwor-

thiness of the evidence produced by a layered attestation depends

on the order in which evidence is gathered on the target system.

This is due to the layered dependencies among components on the

target system. In particular, building up trust in components in

a “bottom-up” manner is generally more trustworthy than other

orders. If an adversary is to avoid being detected, it must either

corrupt deeper (and presumably better-protected) components of

the target system, or else corrupt components in opportune time

windows during the attestation itself. This result is summarized

by saying that bottom-up measurements force the adversary to

perform corruptions that are either “recent or deep”.

But it may not be necessary to force an adversary all the way

down to the hardware level. In other words, the components we

consider sufficiently “deep” will depend (among other things) on

the context of the transaction. The primary targets of measurement

for an attestation will also vary depending on the nature of the trust

decision being supported by the attestation. What a bank wants to

know about a system before approving a large transaction is likely

different from what a corporate gateway wants to know about

the same system when admitting it onto the corporate network.

This suggests that the appraiser and the target will need a way to

negotiate details of an attestation such as which components get

measured and in what order, how deep the measurements go, and

how the evidence is bundled for appraisal.

Copland [19] is a declarative specification language designed

to tailor specifications to different target device architectures and

different contexts for trust decisions. Its formal semantics enables

semantically clear negotiations between a target and a relying party

about the details of the attestation to be performed. The flexibil-

ity allowed by Copland specifications is crucial for its ability to

accommodate the full range of situations in which layered attes-

tations might be performed. However, this flexibility underscores

the importance of understanding the trust properties provided by

alternative specifications. The “bottom-up” rule is insufficient in

part because it does not say how deep is deep enough. An appraiser

should be able to determine what deeper attestations buy them so

they can consider the trade-offs between trust and other factors. For

instance, all else being equal, a speedier option may be preferred to

one that takes more time to complete.

Our Contributions. In this paper, we build primarily off of three

prior efforts ([18, 19, 21]) combining them in a novel way. We ex-

plicitly apply the reasoning principles developed in [21] to the

trust analysis of Copland phrases as introduced in [19]. Since even

moderately large Copland phrases can be prohibitively difficult

to analyze by hand, we introduce a method for automating the

reasoning principles. The basic goal of our analysis is to determine

all the essentially different ways an adversary can corrupt a given

subcomponent while avoiding detection by a layered attestation

designed to attest to the integrity of the subcomponent. Our ap-

proach is to use Chase [18], a general-purpose model finder for

geometric logic, to enumerate all the possible executions consistent

with the Copland specification in which the adversary corrupts the

target and avoids detection. This set of executions contains all the

information needed to understand the conditions under which each

subcomponent must be trusted.

More concretely, our novel contributions in this paper are as

follows:

(1) We develop a first-order theory of saturated queries in Sec-

tion 4.2 that adapts the reasoning principles of [21] to the

analysis problem of finding all models that violate the attesta-

tion goals. We identify a correctness criterion for our theory

and prove that our theory meets that criterion (Thm. 12).

(2) Since Chase is a model finder that works on the geometric

fragment of first-order logic, in Section 6 we find a suitable

axiomatization of our theory in special geometric form and

prove the equivalence of the geometric theory to the more

naturally-stated first-order theory developed in Section 4.2

(Thm. 16). This two-stage axiomatization ensures we accu-

rately capture the reasoning principles laid out in [21] while

allowing us to leverage Chase for automation.

(3) We demonstrate the use of an end-to-end tool chain in Sec-

tion 7 that compiles a Copland phrase into its event seman-

tics [19] and then performs the trust analysis yielding a

characterization of all possible ways for an adversary to de-

feat the attestation. From this characterization the analyst

can determine the least amount of work an adversary must

perform to defeat the attestation. We also show how an ana-

lyst can alter assumptions about dependency relationships

on the target and about adversary capabilities. This allows

the analyst to tailor the analysis according to their needs.

The remainder of the paper is structured as follows. In Sec-

tion 2, we introduce a typical attestation scenario to introduce the

context and some notation, and to motivate our goals. Section 3

provides a high-level overview of the syntax and semantics of Cop-

land from [19]. Section 4 reviews the reasoning principles of [21]

and adapts them into the first-order theory of saturated queries.

In Section 5, we briefly introduce our Chase model finder [18] and

how it works. Section 6 provides the translation of the theory from

Section 4 into special geometric form. Section 7 walks the reader

through several examples of using Chase to analyze the trust prop-

erties of Copland phrases under a variety of assumptions. After

presenting some related work, we finally conclude.
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2 MOTIVATION
In this section, we use the client-bank scenario to illustrate the

utility of the Copland language. A full explanation of Copland

syntax and semantics follows in the next section.

The client must provide evidence to the bank that its web browser

is free of malicious extensions before a transaction can proceed. A

simple version of this attestation may take place among the bank, a

browser monitor bmon running in the client’s userspace us, and a

host-based antivirus suite av running in the client’s kernelspace ks.
The target of the attestation is exts, the client’s browser extensions.
The bank can choose to have the client use either or both of av
and bmon to generate evidence. As we will see, the bank’s choices

greatly influence the trustworthiness of the evidence it receives.

We envision an active adversary able to interfere with the proper

function of components on the client. This adversary may corrupt
a component via any intervention that causes it to deviate (to the

adversary’s advantage) from its regular behavior. The adversary
may also repair corrupted components, returning them to their

regular states. The corruption state of a component has two impor-

tant implications for measurement: a regular measurer will always

accurately report the corruption state of its target, and a corrupted

measurer will always report a regular state for its target.

Though powerful, this adversary is not omnipotent. It cannot

tamper with evidence after the fact, nor can it prevent measure-

ments from occurring. The adversary can however delay measure-

ments while respecting any orderings chosen by the bank.

We consider corruptions in narrow timeframes or of better-

protected components to be difficult for this adversary. We refer

to these respectively as recent and deep corruptions. On the other

hand, we consider repairs in any timeframe and corruptions of

less-protected components without time constraints to be easier

for this adversary.

When a component is corrupted but evidence gathered during

an attestation passes appraisal, we say the adversary has avoided
detection at the component. A critical question is: what other com-

ponents must the adversary have corrupted to avoid detection at a

particular target? This is a central concern we must address to un-

derstand which measurement topologies most constrain adversarial

behavior, and therefore which we should choose.

The Copland phrase in Example 1 represents one choice the bank

may make for structuring the client’s attestation. It encompasses

two measurements taken in parallel, indicated by the ∼ operator

joining them. The bank issues separate measurement requests to

av and bmon and receives the evidence. Here, “parallel” means that

the measurement ordering is not specified: any order is acceptable.

Example 1.

∗bank : @ks [av us bmon] +∼+@us [bmon us exts]

In the left measurement specification, av from its place in ksmea-

sures bmon in us. On the right, bmon in us measures exts, also in

us. We can easily see the motivation to choose these measurements:

if the better-protected av reports that bmon is regular, bmon’s mea-

surement of exts can be reasonably trusted to be accurate.

One can interpret the Copland phrase in Example 1 as a pre-

cise shorthand for a partially-ordered set of labeled measurement

events. Every legal Copland phrase has a well-defined formal event

semantics. This phrase’s semantics includes two events, correspond-

ing to its two measurement specifications, and no orderings. The

labels associated with these events are msp(ks.av, us.bmon) and
msp(us.bmon, us.exts).

Unfortunately, not constraining the order in which the measure-

ments occur opens this attestation up to easy subversion. Suppose

the adversary has corrupted one of the client’s browser extensions.

The adversary can arrange for bmon to measure before av. They can
then corrupt bmon before it measures exts. The corrupted measurer

bmon will falsely report that exts is regular. The adversary may

then repair bmon before allowing av’s measurement to proceed.

Because bmon is regular when it is measured, av reports no corrup-
tion. Both evidence artifacts pass appraisal, meaning the adversary

avoids detection at exts.
How difficult is this to achieve? The adversary had to corrupt

bmon, a relatively less-protected component, without time con-

straints, as well as repair bmon. Both actions are easy for this

adversary, meaning this subversion is overall easy to carry out.

That it is viable is a consequence of insufficiently constraining

measurement precedence. Measurement order is as important to

consider as the measurements themselves: the bank should order

the measurements more deliberately.

The Copland phrase in Example 2 is identical to that in Example 1

but for one critical distinction: av’s measurement of bmon is now

required to occur before the latter measures exts. This is indicated
by the < operator joining the two measurements.

Example 2.

∗bank : @ks [av us bmon] +<+@us [bmon us exts]

Here, delaying av’s measurement offers no advantage, as this

will also delay bmon’s measurement. To avoid detection at exts,
the adversary now has two choices: corrupt av and bmon before

the attestation begins or else corrupt bmon after it is measured

by av but before it measures exts. Thus, to avoid detection, the

adversary must choose between a deep corruption of av or a recent
corruption of bmon, both of which are hard. Prior theoretical work

has shown this to be a general feature of bottom-up measurement

topologies like this one, in which deeper components measure shal-

lower ones before these perform their own measurements [21]. The

bank should choose this topology because it maximally constrains

the adversary.

Decisions about which components measure and in what order

can have striking implications for the trustworthiness of evidence.

For very simple attestations like these, with only a small num-

ber of events in the semantics of their Copland phrases, it is easy

enough to apply our theory of runtime corruption and work out

appraisal outcomes by hand. However, dependency structures and

trust relationships in real-world systems can be extremely com-

plex. The sheer number of components one must countenance in

these systems would easily overwhelm human analysts. The goal of

this paper is to develop a method for automating this analysis and

thereby scale it up to meet the challenges of real-world attestation

problems.
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C ← S P S Measurement (Probe Place Target)

| @P [ C ] At place

| {} Nullify

| − Copy

| ! Sign

| # Hash

| C → C Linear sequence

| C D<D C Sequential branching

| C D∼D C Parallel branching

| ( C ) Grouping

D ← − | + Splitting specification

Figure 1: Copland Syntax

3 COPLAND LAYERED ATTESTATION
LANGUAGE

Copland is a declarative language for specifying layered attestations.

It is used to declare the location and means by which a component

is measured, the methods for combining the evidence collected

from each measurement, and the constraints on the sequencing of

measurement actions. It has a precise semantics based on partially

ordered sets of events [19, Sec. 5]. Possible events include, among

others, measurement actions to generate evidence, and hashing and

signing to protect previously generated evidence.

Copland assumes that each action is performed at a location

called a place. The origin of an attestation request p for phrase t
is specified with the syntax ∗p : t . All phrases we consider in this

paper are of the form ∗bank : t . The syntax of Copland phrases is

presented next.

A symbol S is a sequence of lowercase letters. A place P is a

sequence of digits or a symbol. A legal Copland phrase t is in the

syntactic category C as defined in Fig. 1. The branching opera-

tors are non-associative and have the same precedence, and the

linear sequencing operator is right associative and has a higher

precedence.

A complete description of the combining operators in Copland

requires a description of the flow of evidence collected by a phrase,

however, for this paper, the particulars of evidence collection are

irrelevant. Instead, we focus on the events used to collect and com-

bine evidence, and their orderings. Features of the language that

are relevant only for reasoning about evidence will be identified in

the presentation of the language.

Semantically, a Copland phrase specifies the mapping of input

evidence to some output evidence via one ormore attestation events.

Each event occurs at a well defined place. Events involve taking

measurements, signing or hashing evidence, or routing evidence

so as to produce combinations of evidence.

To describe the semantics of executing Copland phraseC at place

P , we describe how it transforms evidence making use of diagrams

of the form:

label

The box represents an event, and the arrows show the flow of

evidence. The ordering of events respects the flow of evidence. The

syntax of an event label is given in Figure 2.

L ← msp(P .S, P .S) | nul(P) | cpy(P) | sig(P) | hsh(P)
| req(P, P) | rpy(P, P) | split(P,D,O,D) | join(P, P)

O ← < | ∼

Figure 2: Event Label Syntax

e0

e1

e4

e2

e5

e3

e6

e7

ℓ(e0) = split(rp,+,∼,+) ℓ(e4) = req(rp, us)
ℓ(e1) = req(rp, ks) ℓ(e5) = msp(us.bmon, us.exts)
ℓ(e2) = msp(ks.av, us.bmon) ℓ(e6) = rpy(rp, us)
ℓ(e3) = rpy(rp, ks) ℓ(e7) = join(rp)

Figure 3: Event System for Example 1

The most basic Copland phrase is a measurement m q t , for
symbolsm and t , and place q, wherem names the probe, t names

the target of the measurement, and q is the place at which the target
resides. When at place p,m q t means that p should receive some

evidence, performm targeting t at q, and then emit the resulting

evidence.

msp(p.m,q.t)

The semantics of the phrases nullify {}, copy−, sign !, and hash #

have the same form as a measurement. When executing at place

p, their corresponding event labels are nul(p), cpy(p), sig(p), and
hsh(p).

Let p : {c} be the events and their orderings associated with exe-

cuting phrase c at p. Measurements can be combined in a pipeline

fashion using the→ operator. Thus when at p, c1 → c2 means

p : {c1} p : {c2}

A measurement can be taken at a remote location using the @

operator. When at p, @q [c] means

req(p,q) q : {c} rpy(p,q)

Phrases c1 and c2 can be combined using branching. There are

two ways of combining phrases using branching, sequential (o = <)
and parallel (o = ∼) combination. They both follow the same split-

join pattern. When at p, c1 d1od2 c2 means

split(p,d1,o,d2)
p : {c1}

p : {c2}
join(p)

The split specifications d1 and d2 only effect the flow of evidence.

When d = +, evidence is passed, and when d = −, evidence is

dropped. There are additional orderings associated with sequential

branching. When o = <, all of the events associated with c1 precede
the events associated with c2.

Formally, the semantics of a Copland phrase is given by an event

system.

Definition 3 (Event System [19]). An event system (E, ≺, ℓ) con-
sists of

(1) set E of events,
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(2) relation ≺ ⊆ E × E, a strict partial order, and
(3) function ℓ : E → L, a map from events to labels.

The event system for Example 1 is presented in Figure 3. The

branching operation ∼ contributes events e0 and e7. Measurements

occur at events e2 and e5. Events e1 and e3 cause the measurement

at e2 to occur at ks. Events e4 and e6 cause the measurement at e5
to occur at us. The strict partial order ≺ is the transitive closure of

the→ relation shown in the diagram in Figure 3.

The events and labels for Example 2 are the same as they are for

Example 1 except that ℓ(e0) = split(rp,+, <,+). The other difference
is the nodes are linearly ordered.

e0 e1

e4

e2

e5

e3

e6 e7

In this work, we will focus solely on measurement events, and

abstract away all other kinds of events. As a result, sequential

branching and pipelines have the same semantics.

4 THEORY OF LAYERED ATTESTATION
This section concerns understanding how an adversary can inter-

fere with an attestation. Section 4.1 is primarily a summary of the

main definitions of [21]. Section 4.2 is entirely new.

4.1 Review of Prior Definitions
Our primary interest is in analyzing the trust of a Copland phrase

in the presence of an active adversary. We thus start by enriching

the partially ordered event semantics for Copland with labels for

two new types of adversary events: corruption of a component, and

repair of a component.

ℓ(e) = cor(p.c) asserts that event e corrupts componentp.c , and
ℓ(e) = rep(p.c) asserts that event e repairs component p.c .

Adversary events have no associated evidence.

These adversary events serve to toggle the corruption state of

system components between being regular or corrupted. In turn,

the corruption state of components will affect the behavior of other

events. In the current work, we consider an adversary model in

which corrupted components only effect the outcome of measure-

ment events. For all other events (req, rpy, etc.) corrupted compo-

nents have no effect.

Measurement events produce new pieces of evidence about the

target being measured. While the actual values of the evidence data

will be complex and varied, our primary concern is whether the

evidence passes or fails appraisal at the relying party. We therefore

adopt the following idealization of the outcome of measurement. A

measurement event e can generate evidence that will either pass

or fail appraisal. We also assume that a corrupted measurer has

the incentive and ability to always generate evidence that will

pass appraisal, regardless of the corruption state of the target of

measurement. Conversely, (with one exception described below)

a regular measurer always generates evidence whose appraisal

accurately describes the corruption state of the target. So if the

target is regular at the time of measurement the measurer will

produce evidence that passes appraisal, and if the target is corrupt,

the measurer will generate evidence that will not pass appraisal.

Table 1: The effect of corruption on measurement.

Measurer Context Target Evidence Appraisal

corrupt * * passes

* corrupt * passes

regular regular regular passes

regular regular corrupt fails

In the latter case we say that the measurement event detects the

corruption.

The one exception to the above rule is when the measurer relies

on some other component in its context to work effectively. A good

example of this is antivirus software. Its access to the file system is

mediated through the operating system kernel. So, if the kernel is

corrupted, it could hide a corrupted target file. Thus, whenever a

measurer has such a contextual dependency, and that component

is corrupted, we assume it always has the incentive and ability to

cause the measurer to generate evidence that will pass appraisal.

These assumptions are summarized in Table 1, where we use * to

indicate that the outcome of measurement is the same regardless

of the corruption state.

A component may rely on zero, one, or more other components.

When p.m depends on q.c we write Depends(p.m,q.c). Typically
the places p and q will be the same so we make that simplifying

assumption throughout this paper. Since, according to Table 1,

the appraisal only fails when the target is actually corrupt, this

means these cases accurately detect corruption. We therefore write

Detects(e) to denote the fact that the measurement event e pro-

duces evidence that will fail appraisal, allowing the relying party

to detect a corruption. Since we are most interested in cases where

the relying party is fooled into trusting a corrupted system, we will

focus on instances in which the Detects predicate is empty, i.e. all

measurement events generate evidence that will pass appraisal.

Adversary ordered. The assumptions codified in Table 1 only

make sense if the corruption state of a component at an event is well

defined. To see why there might be an issue, consider the partially

ordered set of events in Fig. 4. Since the corruption of p.m is neither

before nor after its repair, it is unclear whether we should consider

p.m to be corrupt or regular at the measurement event. The problem

is that there are two adversary events affectingp.m that aremaximal

in the precedence ordering before the measurement event. In the

adversary-enriched semantics, we need to ensure there is at most

one maximal adversary event affecting a given component prior to

any event. We only need to worry about maximal corruptions or

repairs for components that are relevant to the given event.

cor(p .m) rep(p .m)

msp(p .m,q .t )

Figure 4: An example where corruption state is ill-defined.

Definition 4 (Relevant [21]). Component p.c is relevant to event e
iff
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(1) ℓ(e) = msp(p.c,q.t) or ℓ(e) = msp(q.m,p.c), or
(2) ℓ(e) = msp(p.m,q.t) and Depends(p.m,p.c), or
(3) ℓ(e) = cor(p.c) or ℓ(e) = rep(p.c).

There is a simple condition that will guarantee the corruption

state of components is well defined.

Definition 5 (Adversary-Ordered [21]). (E, ≺, ℓ) is adversary-
ordered iff for each e1, e2 ∈ E, if p.c is is relevant to both e1 and e2,
and e2 is an adversary event, then e1 and e2 are comparable events,

that is e1 ≺ e2, e2 ≺ e1, or e1 = e2.

Any adversary-ordered event system E induces a predicate CorE
that identifies all and only those components that are corrupt at

an event to which they are relevant. Specifically, CorE (p.c, e) holds
if the (unique) most recent adversary event affecting p.c prior to
e is cor(p.c). If, instead, there is no adversary event affecting p.c ,
or if the most recent such event is rep(p.c), then ¬CorE (p.c, e)
holds. Following the rules in Table 1, adversary-ordered event sys-

tems also uniquely determine the DetectsE predicate that iden-

tifies which events accurately detect corruptions. To be explicit,

DetectsE (e) iff CorE (p.t, e) holds for the target of measurement p.t ,
and ¬CorE (q.c, e) for all other components q.c relevant to e . Oth-
erwise ¬DetectsE (e). For the remainder of the paper, we restrict

our attention to adversary-ordered event systems.

The Copland semantics for a phrase t is trivially adversary-

ordered. Since there are no corruption events, CorE is the empty

predicate. However, the purpose of performing an attestation is

to detect corruptions of components of interest. We therefore are

interested in all the ways to enrich the (adversary-free) Copland

event semantics with adversary events.

Definition 6 (Adversary-Enriched). Let (E, ≺, ℓ) be an event sys-

tem. Then (E ′, ≺′, ℓ′) adversary-enriches (E, ≺, ℓ) iff

(1) E ⊆ E ′,
(2) ≺ ⊆ ≺′,

(3) for e ∈ E, ℓ(e) = ℓ′(e), and
(4) every e ∈ E ′ \ E, is an adversary event.

We often abuse notation and write E to denote the triple (E, ≺, ℓ)
leaving ≺ and ℓ implicit. Definition 6 defines a natural partial order

on executions: E ≤ E ′ iff E ′ adversary-enriches E.

Definition 7 (Execution). An execution of Copland phrase t is an
event system that adversary-enriches the Copland semantics for t .
We write E(t) to denote the set of all executions of phrase t .

4.2 Theory of Saturated Queries
The set E(t)will containmany executions, some of which detect cor-

ruptions (i.e. DetectsE (e) for some measurement event e) and some

of which do not. Our aim is to provide a mechanism for querying

E(t) to discover the set of executions that satisfy some assump-

tions of interest. The most important queries are those that yield

executions in which the adversary successfully avoids detection.

Thus we may assume that DetectsE is empty, and that CorE (p.c, e)
for some component p.c and some measurement event e . We then

want to find all executions in E(t) consistent with the assumptions.

More generally, we consider queries of the form (E,φ) where φ
is a predicate identifying which components we are assuming to be

corrupt at which events. That is φ(p.c, e) indicates an assumption

that p.c is corrupted at event e .
Just as we defined a partial order on event systems above, we

can define a partial order on corruption predicates φ by saying

φ ≤ φ ′ iff for all p.c and for all e , φ(p.c, e) implies φ ′(p.c, e). These
two orderings combined create a natural partial order on queries

(E,φ): (E,φ) ≤ (E ′,φ ′) iff E ≤ E ′ and φ ≤ φ ′. The ordering is strict

iff either of the constituent orderings is strict. We use this ordering

to formalize our search goal from two paragraphs ago.

Definition 8. The denotation of query (E,φ), written [[ (E,φ) ]], is
the set of executions defined by the following rules. E ′ ∈ [[ (E,φ) ]]
iff all of the following hold:

(a) E ≤ E ′

(b) φ ≤ CorE′
(c) DetectsE′ is the empty predicate.

Condition (a) says we are interested only in adversary enrich-

ments of the given execution E. Condition (b) says that E ′ satisfies
any assumption we made in φ about components being corrupt.

Condition (c) says that we are only interested in executions that do

not detect corruptions.

Definition 8 is a clear definition of the set we would like to

enumerate, but it does not immediately suggest any procedure for

doing so. In fact, it suffices to enumerate only those executions in

[[ (E,φ) ]] that are minimal in the ≤ ordering on event systems. All

other executions in the denotation require the adversary to perform

at least as much work as one of the minimal ones. In that sense,

we don’t aim to enumerate all executions in the denotation, but

rather, we aim to characterize all executions in the denotation by

enumerating the minimal ones. The core idea is to perform a search

by climbing in the ≤ ordering on queries until we reach a stopping

condition for a query (E ′,φ ′) that allows us to include E ′ in our

enumeration. We next define the stopping condition which relies

on the following definition.

Definition 9. The query (E,φ) is saturated if and only if

(a) φ = CorE , and
(b) DetectsE is the empty predicate.

Condition (a) here is similar to condition (b) in Def. 8, except it

further restricts how CorE is allowed to extend φ. In particular, it

says that E cannot contain any corrupted components at events not

already identified by φ. Saturated queries signal that a search in the

query ordering can stop, as indicated by the following two lemmas.

Lemma 10. If (E,φ) is saturated, then E ∈ [[ (E,φ) ]].

We omit the proof as it is a simple application of the definitions.

Lemma 11. If (E,φ) is saturated and (E,φ) < (E ′,φ ′) then E <
[[ (E ′,φ ′) ]].

Proof. Either E < E ′ or φ < φ ′. In the first case, either E ′ has
strictly more events than E or E ′ has strictly more orderings than

E. Either way, this extra structure is preserved by all Ê ≥ E ′, so
all elements of [[ (E ′,φ ′) ]] must also contain this extra structure. It

follows immediately that E < [[ (E ′,φ ′) ]].
In the other case where φ < φ ′, there is some (p.c, e) such that

¬φ(p.c, e) and φ ′(p.c, e). By Def. 8 condition (b), for every element
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Ê ∈ [[ (E ′,φ ′) ]], CorÊ (p.c, e). But since CorE = φ and ¬φ(p.c, e),
E < [[ (E ′,φ ′) ]]. □

Lemmas 10 and 11 show why the definition of saturated is a

useful and natural stopping condition. By Lemma 10, saturated

queries identify elements of the denotation, and by Lemma 11 if we

didn’t stop the search, we would miss the execution encoded by the

saturated query. The following theorem tells us that by enumerating

the minimal saturated queries above (E,φ), we capture precisely
the denotation of (E,φ).

Theorem 12. Let R = {(E ′,φ ′) | (E,φ) ≤ (E ′,φ ′) and (E ′,φ ′) is
saturated}. Let Rmin be the ≤-minimal members of R. Then

[[ (E,φ) ]] =
⋃

(E′,φ ′)∈Rmin

[[ (E ′,φ ′) ]].

Proof. The reverse inclusion is easy to show. We know E ≤ E ′

andφ ≤ φ ′ by the definition of Rmin. If Ê ∈
⋃
(E′,φ ′)∈Rmin [[ (E

′,φ ′) ]],

then for some (E ′,φ ′) ∈ Rmin, we have E
′ ≤ Ê, φ ′ ≤ CorÊ , and

DetectsÊ is empty. By the transitivity of ≤, we easily conclude that

E ≤ Ê and φ ≤ CorÊ .
Now consider the forward inclusion. Suppose Ê ∈ [[ (E,φ) ]].

Then by Def. 8, E ≤ Ê, φ ≤ CorÊ , and DetectsÊ is empty. Now con-

sider the query (Ê,CorÊ ). It is saturated because, trivially, CorÊ =
CorÊ , and we already saw DetectsÊ is empty. Furthermore, we al-

ready knew that φ ≤ CorÊ . So (Ê,CorÊ ) ∈ R. Thus there must be

some (E ′,φ ′) ∈ Rmin such that (E ′,φ ′) ≤ (Ê,CorÊ ). So E
′ ≤ Ê and

φ ′ ≤ CorÊ . So Ê ∈ [[ (E
′,φ ′) ]] as desired. □

Up to now, we have described the theory of saturated queries and

showed why that theory correctly captures the denotation we want.

We have not produced any search algorithm to enumerate saturated

queries. Our approach is to leverage a general-purpose model finder

for geometric logic to implement the search. We will provide the

model finder with an axiomatization of the theory of saturated

queries, and the job of the model finder is to enumerate minimal

(and possibly non-minimal) models of the theory. Theorem 12 tells

us that if we correctly axiomatize the theory and if the model finder

performs correctly, then it will enumerate the set we want. Before

turning to our axiomatization of the theory of saturated queries,

we first provide an overview of the model finder discussing what it

does and how it works.

5 MODEL FINDINGWITH CHASE
Chase [18] is a model finder for first-order logic with equality. It

finds minimal models of a theory expressed in finitary special geo-

metric form, where functions in models may be partial. A formula is

in finitary special geometric form if it is a finite sentence consisting

of a single implication, the antecedent is a conjunction of atomic

formulas, and the consequent is a disjunction. Each disjunct is a

possibly existentially quantified conjunction of atomic formulas.

∀®x . P1(®x) ∧ · · · ∧ Pn (®x) ⇒
∨
i
∃®yi .Qi ,1(®x, ®yi ) ∧ · · · ∧Qi ,ni (®x, ®yi )

A function is partial if it is defined only on a proper subset of its

domain. A sentence in first-order logic is finitary geometric iff it is

logically equivalent to a finite set of sentences in finitary special

geometric form. Finitary geometric logic is also called coherent

logic.

We will assume familiarity with basic ideas and results from

first-order mathematical logic; notions that are not defined here

are treated in any text on logic, such as [6], with allowances for

partial functions. When a structure A satisfies theory T , we write
A |= T and call A a model of T . The definition of a homomorphism

must account for partial functions.

Definition 13 (Homomorphism). Let A and B be structures. A

homomorphism h of A into B is a function with these properties

(1) For each n-place predicate P,

P(a1, . . . ,an ) ∈ A implies P(h(a1), . . . ,h(an )) ∈ B.

(2) For each n-place function f ,

f (a1, . . . ,an ) = a0 ∈ A implies f (h(a1), . . . ,h(an )) = h(a0) ∈ B.

We write A ≪ B when there is a homomorphism from A into B.

Definition 14 (Minimal Model). Model A of T is minimal iff for

all models B of T , whenever B ≪ A then A ≪ B.

Definition 15 (Set of Support). A set of modelsM is a set of support
for theory T iff whenever B |= T , there exists a model A ∈ M such

that A ≪ B.

When given a theory, Chase produces a set of support whenever

it terminates successfully. It may produce some models that are not

minimal. We will discuss this point again in Section 7.3.

5.1 Chase Input
The input to the Chase program is a set of first-order formulas

in finite geometric form. The official syntax is a slight variation

of Geolog [7] syntax, and is inspired by Prolog in the sense that

quantification is implicit and variables are distinguished using capi-

talization, where variables are capitalized. The full details of Chase

input syntax is described in [18].

For uniformity of the current presentation, we will display all in-

put formulas in the traditional mathematical style. In particular we

use ⊤ and ⊥ to represent the always true and always false formulas

respectively. We also use the convention that logical constants are

interpreted as 0-ary function symbols and depicted using sans-serif

font: a, b, c, etc. Comments are delimited with (∗ ∗).

As a minimal illustrative example, we can represent the theory

of total orders of two or fewer elements with the following input:

(∗ Total Ordering ∗)

⊤ ⇒ num(a) ∧ num(b)

∀x,y . num(x) ∧ num(y) ⇒ x < y ∨ x = y ∨ y < x

where a and b are constants, i.e., 0-ary function symbols.

5.2 Structures
A Chase structure for theory T is a set of facts. A fact is a ground
atomic formula that has one of two forms

(1) P(c1, . . . , cn ), or
(2) f (c1, . . . , cn ) = c0.

where P and f are in the signature of T .
The universe of structure A is the least setU of constants such

that
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a = a, b = b

num(a), num(b), a = a, b = b

num(a), num(b),

a < b, a = a, b = b

num(a), a = a, b = a

num(a), num(b),

b < a, a = a, b = b

Figure 5: Chase search tree for the total ordering example

(1) P(c1, . . . , cn ) ∈ A implies c1, . . . , cn ∈ U , and

(2) f (c1, . . . , cn ) = c0 ∈ A implies c0, . . . , cn ∈ U .

Let C be the set of constants that occur in theory T . A structure

A produced by Chase for theory T has the following properties.

(1) Functions may be partial.

(2) Each constant in C is the left hand side of a fact in A.
(3) Equality in A is closed under congruence.

(4) Each element inU is the canonical representative of an equiv-

alence class induced by congruence closure.

One of the three models found by Chase for the total ordering

example above is {num(a), num(b), a < b, a = a, b = b}.

5.3 Algorithm
Models of theory T are found using an algorithm called the

chase [13]. The procedure starts with a structure in which each

constant inT is equated to itself. QueueQ is created containing the

initial structure, and the main loop begins.

The chase for theory T repeats the following steps until queue

Q is empty.

(1) Take structure A from Q .
(2) If Amodels T then output A.
(3) Otherwise, choose a formula F in T not satisfied by A.
(a) Find a variable assignment S for the universally quantified

variables in F such that its antecedent is satisfied, but its

consequent is not.

(b) Apply S to each disjunct in the consequent.

(c) For each disjunct, substitute a freshly generated constant

for each existentially quantified variable, and add to the

queue a structure produced by augmenting A with the

disjunct. Mark A as being the parent of the new structure.

The structures generated by a run of Chase on the Total Ordering

Example are shown in Fig. 5. An arrow connects a parent structure

with a child. The boxed structures are models of the theory.

The initial structure just equates constants. The second structure

generated adds num facts. At this point, the only applicable sentence

is the one that imposes a total ordering. It produces models, and

Chase terminates successfully.

In general, when structure A is the parent of B, there exists

a homomorphism from A into B. Every chase step is structure-

preserving.

Chase finds models in a similar manner as is done by Razor [23].

The major difference between the two tools is Razor is designed

for interactive exploration of models while Chase is designed to

work without human intervention. Correctness and termination

properties of the chase algorithm are presented in the Razor paper.

6 CHASE THEORY FOR LAYERED
ATTESTATION

At the end of Section 4 we identified the goal of correctly axiom-

atizing the theory of saturated queries. As queries (E,φ) contain
adversary-ordered event systems as one component of the pair,

our theory contains an axiomatization of adversary-ordered event

systems. Since the definitions are already in special geometric form,

and due to space limitations, we omit the presentation of this part

of the theory to focus on the axiomatization of saturation. We note

only that these rules serve to define the meaning of the predicates

relevant(p.c, e) and ms_evt(e) which say that component p.c is rel-
evant to event e (in the sense of Def. 4), and that e is a measurement

event, respectively.

We also omit numerous rules that do not provide any insight,

such as rules that express the injectivity of event labels. While such

rules are important for a correct axiomatization, a discussion of

them would detract from the core contribution.

We present below a general theory of saturation. Our geometric

theory for any given phrase will contain a formula stating that if

E is a measurement event, it must be one of the events generated

by the Copland semantics. This enforces Def. 6 ensuring models

found by Chase are adversary enrichments of the given Copland

semantics. That formula is necessarily dependent on the Copland

phrase being analyzed, so it is not included as part of the general

theory.

Axiomatizing the theory of saturated queries is not as straight-

forward. The theory as presented in Section 4 relies on the de-

rived predicates DetectsE and CorE . These have properties that

are not preserved under model homomorphisms (i.e. adversary-

enrichments). That is, if we know E ≤ E ′ we cannot necessarily
conclude that CorE ≤ CorE′ , or vice versa. Since formulas in fini-

tary special geometric form are precisely those that are preserved

under homomorphism, and since the ≤ relation on the derived pred-

icates CorE and DetectsE are not preserved under homomorphism,

we cannot directly reference DetectsE or CorE in our axiomatiza-

tion.

We therefore need to find an equivalent set of formulas in finitary

special geometric form that do not reference any facts not preserved

by homomorphism. We use the four formulas depicted in Fig. 6.

Notice that for components p.c the place p and the component c
are treated as two separate variables.

Informally, Formula 1 states that if the target of a measurement

event is corrupt at the time of measurement, then (under the back-

ground assumption that all evidence created will pass appraisal)

either the measurer or something it depends on must be corrupt at

that event. This essentially encodes Table 1. Formula 2 says that if

a component is corrupt at a given event, there must have been a

prior corruption event for that component. Formula 3 says that if

a component is corrupt at event e2 but it was previously repaired

at e1, then there must be a corruption event for that component
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between e1 and e2. Finally, Formula 4 says that if there is a corrup-

tion event for a given component, and a later measurement event at

which the component is relevant, then either the component is still

corrupt, or there is an intermediate repair event for the component.

Notice that all the formulas rely on existential quantification, and

Formulas 1 and 4 use disjunction. We are therefore comfortably

outside the Horn fragment, so we cannot rely on tools restricted to

Horn clauses.

It is far from obvious that these four formulas are equivalent

to the theory of saturated queries. The following theorem demon-

strates that they are indeed equivalent.

(∗ Formula 1 ∗)

∀e,p,m,q, t . ℓ(e) = msp(p.m,q.t) ∧ φ(q.t, e)

⇒ φ(p.m, e)∨

∃c .Depends(p.m,p.c) ∧ φ(p.c, e)

(∗ Formula 2 ∗)

∀e,p, c .φ(p.c, e)

⇒ ∃e ′ . e ′ ≺ e ∧ ℓ(e ′) = cor(p.c)

(∗ Formula 3 ∗)

∀e1, e2,p, c . e1 ≺ e2 ∧ φ(p.c, e2) ∧ ℓ(e1) = rep(p.c)

⇒ ∃e ′ . e1 ≺ e ′ ∧ e ′ ≺ e2 ∧ ℓ(e
′) = cor(p.c)

(∗ Formula 4 ∗)

∀e1, e2,p, c . e1 ≺ e2 ∧ ℓ(e1) = cor(p.c)∧

ms_event(e2) ∧ relevant(p.c, e2)

⇒ φ(p.c, e2)∨

∃e ′ . e1 ≺ e ′ ∧ e ′ ∧ e2 ∧ ℓ(e
′) = rep(p.c)

Figure 6: The Chase theory for saturated queries.

Theorem 16. The query (E,φ) is saturated iff it satisfies Formu-

las 1–4.

Proof. Keep in mind that if there is no assignment of the univer-

sally quantified variables to constants that satisfy the antecedant

of a formula, then the formula is trivially satisfied.

(⇒): We proceed by contrapositive, assuming one of the four

formulas is not satisfied, and conclude that (E,φ) is unsaturated.
Formula 1: Assume Formula 1 is not satisfied. Then there is

some measurement event e in which component p.m measures

component q.t , and φ(q.t, e) but ¬φ(p.m, e) and for every p.c such
that Depends(p.m,p.c), ¬φ(p.c, e). If CorE , φ then, by definition,

(E,φ) is unsaturated which is what we aim to show. So we may

assume CorE = φ. Then ¬CorE (p.m, e) and for every p.c such

that Depends(p.m,p.c), ¬CorE (p.c, e). Then by the definition of

DetectsE as described in Table 1, DetectsE (e) and so is not empty.

Thus, by definition, (E,φ) is unsaturated.

Formula 2: Assume Formula 2 is not satisfied. Then for some

p.c and e , φ(p.c, e), but there is no e ′ ≺ e with ℓ(e ′) = cor(p.c).
Then ¬CorE (p.c, e), and hence CorE , φ. So, by definition, (E,φ)
is unsaturated.

Formula 3: Assume Formula 3 is not satisfied. Then there is some

repair event ℓ(e1) = rep(p.c) with e1 ≺ e2 such that φ(p.c, e2),
but there is no intermediate corruption event e1 ≺ e ′ ≺ e2 such
that ℓ(e ′) = cor(p.c). Thus, the last adversary event for p.c before
e2 is a repair event. This means ¬CorE (p.c, e2). But φ(p.c, e2), so
CorE , φ, making (E,φ) unsaturated.

Formula 4: Assume Formula 4 is not satisfied. Then there is some

corruption event ℓ(e1) = cor(p.c) preceding a measurement event

e2 to which p.c is relevant where ¬φ(p.c, e2) and there is no inter-

mediate repair event e1 ≺ e ′ ≺ e2 with ℓ(e
′) = rep(p.c). Since there

is no intermediate repair event, the last adversary event for p.c
before e2 is a corruption event. This means that CorE (p.c, e2). But
¬φ(p.c, e2), soCorE , φ, making (E,φ) unsaturated. This concludes
the proof of one direction.

(⇐): We suppose that (E,φ) is unsaturated and we demonstrate

that one of Formulas 1–4 is not satisfied. We take cases on whether

CorE = φ.
CorE = φ: In this case, since (E,φ) is unsaturated, there must be

an event e for which DetectsE (e). By examining Table 1, the only

possibility is for ¬CorE (p.m, e) and for all p.c in the context of

p.m, ¬CorE (p.c, e), whereas the target of measurement q.t satisfies
CorE (q.t, e). SinceCorE = φ,φ(q.t, e) but ¬φ(p.m, e) and ¬φ(p.c, e).
Thus Formula 1 is not satisfied.

CorE , φ: So there is some event e and some component p.c

such that either ¬CorE (p.c, e) and φ(p.c, e), or CorE (p.c, e) and
¬φ(p.c, e).

Suppose that ¬CorE (p.c, e) and φ(p.c, e). From ¬CorE (p.c, e)
we know that either there are no adversary events for p.c before
e , or, if there are some, the most recent one has the label rep(p.c).
In the first case, Formula 2 is not satisfied, because φ(p.c, e) holds
without a prior corruption event. In the second case, Formula 3 is

not satisfied because φ(p.c, e) holds with a prior repair event for

p.c , but without an intermediate corruption event.

Finally, suppose CorE (p.c, e) and ¬φ(p.c, e). From CorE (p.c, e)
we know that there is a corruption event for p.c prior to e with-
out any intermediate repair event. But since ¬φ(p.c, e), this means

Formula 4 is not satisfied. □

Theorem 16 tells us that models found with Chase using the

theory of Fig. 6 (together with the theory of adversary-ordered

executions) will be saturated queries. As Chase is designed to pro-

duce a set of support, if we feed Chase with a formula representing

an initial query (E,φ), its output will include all the minimal satu-

rated queries (E ′,φ ′) such that (E,φ) ≤ (E ′,φ ′). So by Thm. 12 and

Lemma 10, we can project these queries onto their executions E ′

to obtain the minimal elements of the denotation [[ (E,φ) ]]. These
minimal executions characterize all the ways an adversary can

avoid detection consistent with the original query (E,φ). For any
other (non-minimal) execution in the denotation, there is a minimal

one in which the adversary performs less work (i.e. strictly fewer

actions or strictly weaker orderings). An analyst can then inspect

the minimal executions to determine if the work required of an
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adversary is sufficiently difficult. We demonstrate such analyses in

the next section.

7 ANALYSIS OF COPLAND PHRASES
In this section we build on the examples from Section 2 to show how

to use Chase and our input theory to analyze the trust properties

of Copland phrases.

7.1 Example Walkthrough
We start by returning to Example 1 from Section 2:

∗bank : @ks [av us bmon] +∼+@us [bmon us exts]

This phrase is designed to check the list of extensions exts in-
stalled in the browser. In our analysis, therefore, we aim to discover

the ways in which the adversary might evade detection assuming

exts is corrupt (i.e. contains an unapproved extension) when it is

measured. Our initial query, therefore, will be (E,φ) in which E is

the event system produced by the Copland semantics, and φ only

holds for φ(us.bmon, e5) where e5 is the event in which us. bmon
measures us. exts. (The subscript of 5 comes from the labeling in

Fig. 3.)

We have implemented a preprocessing pipeline that converts a

raw Copland phrase into a Chase formula representing its event

system E. This phrase is a logical conjunction of facts that corre-

spond to the existence of events (labeled as measurement events)

and facts expressing the precedence order among them. The result

when applied to Example 1 is the following.

⊤ ⇒ ℓ(e2) = msp(ks.av, us.bmon)∧

ℓ(e5) = msp(us.bmon, us.exts)
(1)

The non-consecutive event numbers reflect the presence of non-

measurement events in the full Copland semantics described in

Section 3. We represent φ explicitly with the following rule.

⊤ ⇒ φ(us. exts, e5) (2)

We then submit to Chase a theory consisting of

• the theory of adversary-ordered executions,

• the formulas in Fig. 6,

• a single formula expressing the fact that any measurement

event is one of the ones implied by the Copland semantics,

• Formulas from equations (1) and (2) above representing the

initial query, and

• a set of auxiliary formulas expressing lower level facts such

as the injectivity of function symbols.

The full set of inputs can be found at copland-lang.org [22].

Chase performs its search as described in Section 5, and Theo-

rem 16 ensures that models found by Chase are saturated queries

compatible with the semantics of the given Copland phrase. Ex-

ample 1 results in 5 different saturated queries. Fig. 7 depicts the

executions corresponding to those saturated queries. The fact that

the adversary can avoid detection is not surprising because there is

always a way for an adversary to succeed by corrupting enough

components or by corrupting components in the intervals between

when they are measured and when they perform measurements.

Indeed two of the models (Models 2 and 3) represent executions in

which the adversary utilizes exactly those two strategies. InModel 3,

ks.av, us.bmon, and us.exts are all corrupted before the start of the

Model 1
cor(us.exts) cor(us.c)

msp(us.bmon,us.exts) msp(ks.av,us.bmon)

Model 2

cor(us.exts) cor(us.bmon)

msp(ks.av,us.bmon)

msp(us.bmon,us.exts)

Model 3
cor(ks.av) cor(us.bmon) cor(us.exts)

msp(ks.av,us.bmon) msp(us.bmon,us.exts)

Model 4
cor(ks.c) cor(us.bmon) cor(us.exts)

msp(ks.av,us.bmon) msp(us.bmon,us.exts)

Model 5
cor(us.bmon) cor(us.exts)

msp(us.bmon,us.exts)

rep(us.bmon)

msp(ks.av,us.bmon)

Figure 7: Executions of Example 1

attestation. In Model 2, only us.bmon and us.exts are corrupted, but
the former is corrupted after it is measured, but before it performs

its measurement. Two other models (Models 1 and 4) are variants

on these in which the measurement components themselves are not

corrupted but Chase posits some other component on which they

depend might be corrupted instead. Chase cannot identify what

such a component might be. It simply recognizes that the existence

of such a dependency (which is not itself measured) could lead to

the adversary avoiding detection. So, for example, us.av probably
relies on the kernel to function correctly. If the kernel is corrupted

with a rootkit, this could cause the av not to discover a corruption

of us.bmon. Finally, in the fifth model (Model 5), the adversary

succeeds by corrupting both us.bmon and us.exts before the attes-
tation begins. But in order to avoid detection at the measurement

of us.bmon by ks.av the adversary relies on the possibility that

that this measurement could happen after the other measurement,

providing an opportunity to repair us.bmon after it performs its

measurement, but before it gets measured itself.

These 5 models characterize where the remaining risk lies after

performing the layered attestation specified by the Copland phrase.

They help identify assumptions that must hold in order for the

attestation to guarantee detection of corruption. For example, the

adversary must not corrupt ks.av or any component it depends

copland-lang.org
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on. Similarly, the adversary must not corrupt us.bmon after it has

been measured. A relying party may have reason to believe that the

target system is capable of ensuring these assumptions are met. For

example, the relying party may trust that kernel level protections

will protect ks.av from corruption, or that, say, address space layout

randomization makes a successful runtime corruption of us.bmon
extremely unlikely. Alternatively, the relying party may simply be

willing to take these assumptions on blind faith. If the attestation

is meant to support an interaction that is not overly sensitive, the

relying party might believe the adversary is capable of performing

one of these actions, but also be willing to take such a risk.

One advantage of our analysis approach is that we can often

explicitly express such assumptions as additional formulas input to

the Chase. For example, we can write

∀c . Depends(us.bmon, us.c) ⇒ ⊥ (3)

to express the assumption that the browsermonitor does not depend

in any way that matters on any other component. If we add this

formula to our Chase theory we are essentially asking Chase not

to show us any models in which it discovers such a dependency.

Indeed, when we run Chase with this extra formula, it identifies 4

models instead of 5 because only one of the original 5 satisfied the

antecedent of the formula (and hence was discarded).

Recent or deep corruptions have been identified as winning

strategies for an adversary seeking to avoid detection given this

adversary model [21]. However, as we saw above, there may be

reasons to believe such corruptions are not likely. In either case, it

is useful to discover if a Copland phrase only admits such strategies,

or if there are other ways for the adversary to succeed. We can

express the lack of deep corruptions directly by identifying the

components which are considered “deep enough” to have strong

protection and writing, for example:

∀e . ℓ(e) = cor(ks.av) ⇒ ⊥ (4)

This excludes models in which ks.av is ever corrupted. We can

similarly exclude all recent corruptions by disallowing corruption

events that occur after some measurement event:

∀e1, e2,p, c . e1 ≺ e2 ∧ ℓ(e2) = cor(p.c) ∧ms_evt(e1) ⇒ ⊥ (5)

For the Copland phrase in Example 1, if we add the two formu-

las (4) and (5) precluding deep or recent corruptions, together with

assumptions like equation (3) that express there are no unaccounted-

for dependency relationships, then the search finds only one ex-

ecution. This is Model 5 in Fig. 7 in which a corrupted us.bmon
performs its measurement, then repairs itself before getting mea-

sured. While this attack may require some skill (or possibly luck)

in ensuring the two measurements happen in the required order,

a stronger Copland phrase would guarantee the impossibility of

this order of measurement. The Copland phrase from Example 2

specifies that ks.av must perform its measurement of us.bmon be-

fore the latter performs its measurement. This measurement is

“bottom-up” in the sense that components higher up in the layered

structure of the target system are measured later than the lower

layers. Bottom-up measurement orderings are known to guarantee

that any corruptions are recent or deep [21]. It is easy to verify this

result for the particular case of Example 2 by submitting a query

that excludes recent or deep corruptions. Indeed, Chase finds no

executions for Example 2 when recent and deep corruptions are

excluded.

7.2 Analyzing Larger Phrases
With Copland phrases as simple as those from Examples 1 and 2, it

seems feasible to perform an analysis by hand. The simple examples

above allow for a clear exposition of the underlying principles of

the methodology. However, as soon we begin to consider more

complicated phrases involving numerous components with various

dependencies and measurements that can be ordered in many ways,

the analysis becomes much more complex and requires automation.

As layered attestation is still an emerging technique, it is difficult

to say how large a “typical” Copland phrase would be for realistic

applications.

Two sources give us an initial indication of how large we might

expect them to be. First, our colleagues AdamPetz and Perry Alexan-

der have recently implemented an infrastructure for the faithful

execution of Copland phrases [17]. In ongoing work developing a

demonstration, they report using Copland phrases that involve 4-5

measurement events [15]. Since this is an initial demonstration, we

might expect phrases to grow larger than that. Our second source

of information on what might be a typical size of a Copland phrase

comes from the Internet Engineering Task Force’s Remote ATtesta-

tion procedureS (RATS)Working Group. Their document describing

an architecture for remote attestation [2] envisions supporting at

least three layers (ROM, bootloader, kernel) that collect evidence

about the environments above them in the hierarchy. Each layer

might have several targets of measurement, easily resulting in 9-12

measurement events. We thus need to ensure that our approach

can scale to such sizes and beyond.

As a concrete example, consider the following more complex

version of the bank’s attestation problem. Instead of using a special-

purpose measurer to simply list installed browser extensions, the

bank is willing to accept a list generated by the browser’s extension

manager us.extmgr. However, the bank is interested in gaining trust
in the extension manager which relies on part of the core browser

code us.bser to function properly. Thus, the bank’s special-purpose

browser monitor us.bmonwould now be responsible for measuring

core parts of the browser code as well as the extension manager.

For instance, it could hash elements of core functions needed to

properly enumerate the list of extensions. The general-purpose

antivirus software us.av would still be responsible for scanning for

malware affecting us.bmon. For extra assurance, the bank will also

request a runtime measurement of the operating system kernel.

Tools such as LKIM [12] inspect the structure of the memory of a

Linux kernel to detect violations of invariants that commonly occur

when rootkits attempt to hide. WinKIM is a similar tool for the

Windows kernel, and it could be run in a separate VM supported by

Microsoft’s Hyper-V virtualization technology. So it may request

the kernel integrity monitor in Hyper-V, hv.kim, to measure the

kernel, ks.ker. For completeness, we imagine the target system has a

way to measure us.av itself from another component hv.avm living

in a Hyper-V VM. The following Copland phrase accomplishes the

above attestation.
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msp(hv.kim,ks.ker) msp(hv.avm,ks.av)

msp(ks.av,us.bmon)

msp(us.bmon,us.extmgr) msp(us.bmon,us.bser)

msp(us.extmgr,us.exts)

Figure 8: Copland semantics for complex attestation.

Example 17.

∗bank : @hv[(kim ks ker +∼+ avm ks av)
+<+@ks[av us bmon

+<+@us[(bmon us extmgr+∼+
bmon us bser)
+<+ extmgr us exts]]]

The value of automation provided by Chase for analyzing such

a phrase becomes quickly apparent. In analyzing this phrase, we

assume two dependency relations exist. Specifically, we assume

both

∀p, c . Depends(us.extmgr,p.c) ⇒ p = us∧ c = bser (6)

∀p, c . Depends(ks.av,p.c) ⇒ p = ks ∧ c = ker (7)

The Copland semantics for Example 17 is depicted in Fig. 8. If

we submit a query to Chase in which we only stipulate that φ holds

for us.exts when it is measured assuming only that there are no

unaccounted-for dependency relationships, we discover 40 distinct

ways for the adversary to avoid detection. By submitting more con-

strained queries that make stronger assumptions, we can develop

an understanding of what hoops an adversary is forced to jump

through in those 40 possibilities. For example, if we additionally

assume that neither of the components protected by Hyper-V are

corrupted, there are only 24 possibilities. If, instead, we assumed

only that no corruptions occur during the attestation (but allow

components in Hyper-V to be corrupted) there are 12 possibilities.

If we assume both that components in Hyper-V are not corrupted

and that there are no other corruptions during the attestation, then

the adversary cannot succeed.

While we believe constraining the adversary to performing re-

cent or deep corruptions is often an acceptable risk, there may be

circumstances where this assumption is unrealistic. Perhaps the sig-

nature file for the antivirus is not integrity protected. Modification

of this file would affect the outcome of the virus scan. We would

want to enrich the Copland phrase above to include a measurement

of us.sigfile. However, it could be very easy for malware to remove

its own signature from this unprotected list during the attestation.

In our analysis, therefore, we would preclude all corruptions during

the attestation except for corruptions of the signature. We would

write:

∀e1, e2,p, c . e1 ≺ e2 ∧ ℓ(e2) = cor(p.c) ∧ms_evt(e1)

⇒ p = us∧ c = sigfile
(8)

In this way, Chase run with our layered attestation theory pro-

vides an interactive method for exploring the trust consequences of

Copland phrases. There are often many ways to collect any given

set of measurements. By running Chase on the Copland phrases

representing the variety of measurement strategies, we can un-

derstand the relative strengths and weaknesses among them. The

fewer assumptions that need to be made in order to guarantee

successful detection of any corruptions, the stronger the Copland

phrase. Since there will never be a single solution to fit all use cases,

we believe this exploratory approach to analyzing the trustworthi-

ness of layered attestation strategies is an essential capability in

designing attestation systems & protocols and in selecting sets of

Copland phrases suitable for given situations.

7.3 Performance and Scaling
A natural concern with any automated analysis is whether it can

terminate quickly, and how the performance scales with size. In

our case, the analysis is meant to be applied at design time. Ideally,

an analyst would use this approach to “debug” a Copland phrase

as they decide what to include in an attestation policy. Since this

analysis is not performed at runtime, we easily tolerate a search

that takes seconds or even a few minutes to complete.

Another important aspect of interpreting performance results

is that an incomplete search that finds models to inspect is also of

value to the analyst. It already highlights areas of weakness that can

be addressed either by modifying the phrase itself, or by ensuring

the target system has mechanisms to support the types of assump-

tions that help constrain the search. The latter point is key, because

a single search constraint justified by a single defensive mechanism

will typically eliminate a significant fraction of the models from

the search. Thus, even when a search finds many models, it is often

sufficient to inspect only a few of them to determine useful search

constraints resulting in a more reasonable set of models.

There are several factors that affect the performance of Chase

on our examples: details of the phrase being analyzed, constraints

used during the search, Chase’s scheduling of formulas, and the

inclusion of non-minimal models. Before reporting the detailed

performance numbers for the examples presented so far, we discuss

these factors as well as some optimizations we have developed.

First, most issues with performance stem from the way in which

formulas with disjunction create new models in the search. Formu-

las with disjunction create branches in the search tree, so phrases

that exercise these formulas more tend to generate larger search

trees and take longer to analyze. Due to the branching implicit

in Def. 5 (adversary-ordered) phrases that use a lot of parallelism

(the∼ operator) tend to take longer than those withminimal branch-

ing. The formulas axiomatizing the definition of adversary-ordered

offer several ways to resolve the orders between events that are

unconstrained by the parallelism. Thus, performance does not scale

simply with the size of a phrase alone.

Related to the above is the fact that searches with no constraints

on the Depends relation result in more models and take longer to

complete than those with very explicit dependencies. One of the

branches of Formula 1 in Fig. 6 contains an existential variable

representing a component. This variable may represent a compo-

nent not yet known, or it may represent one of the components

involved in other events. This indeterminacy often leads to further

branching in the search. Explicit dependency relations help manage
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this indeterminacy by ensuring the existentially quantified variable

gets equated with a fixed constant. Of course the other constraints

presented above that rule out recent or deep corruptions will dra-

matically reduce the number of models of the theory, and hence

result in faster analyses as well.

It turns out that the way in which Chase schedules formulas to

apply can have a dramatic outcome on the size of the search tree. By

default, Chase relies on fair scheduling to ensure that every formula

has the opportunity to be applied. Our runs of Chase overrule its

default scheduling to help us more quickly detect branches that

will not lead to models. While we had to rely on detailed domain

knowledge to determine a schedule that performs well in practice,

the scheduling seems to be most sensitive to the order of rules in the

fixed (non-phrase-specific) theory, so others using this approach

can already benefit from a schedule that works well in practice.

Finally, although Chase is guaranteed to find a set of support, it

does not guarantee that all the models it finds will be minimal. In

our early development, we found that Chase was discovering mod-

els with “extraneous” events. These fell into two clear categories.

First is when cor(p.c) is followed immediately by rep(p.c) with no

measurement event between them to “witness” the corruption. Such

a model is not minimal because the model obtained by removing

those two events still satisfies the theory and is smaller (in the

sense described in Section 5). Second, models with two instances

of cor(p.c) without a rep(p.c) event in between are not minimal

because the second corruption event is redundant. These two exam-

ples lead to four instances of non-minimality, two for each example

because the roles of cor(p.c) and rep(p.c) can be reversed. We there-

fore added the four formulas depicted in Fig. 9 to our theory to

preclude models with such instances of non-minimality.

(∗ Addresses pointless alternating corruptions and repairs ∗)

∀e1, e2,p, c . ℓ(e1) = cor(p.c) ∧ ℓ(e2) = rep(p.c) ∧ e1 ≺ e2

⇒ ∃e3 . e1 ≺ e3 ∧ e3 ≺ e2 ∧ms_evt(e3) ∧ relevant(p.c, e3)

∀e1, e2,p, c . ℓ(e1) = rep(p.c) ∧ ℓ(e2) = cor(p.c) ∧ e1 ≺ e2

⇒ ∃e3 . e1 ≺ e3 ∧ e3 ≺ e2 ∧ms_evt(e3) ∧ relevant(p.c, e3)

(∗ Addresses redundant corruptions and repairs ∗)

∀e1, e2,p, c . ℓ(e1) = cor(p.c) ∧ ℓ(e2) = corp.c ∧ e1 ≺ e2

∃e3 . e1 ≺ e3 ∧ e3 ≺ e2 ∧ ℓ(e3) = rep(p.c)

∀e1, e2,p, c . ℓ(e1) = rep(p.c) ∧ ℓ(e2) = repp.c ∧ e1 ≺ e2

∃e3 . e1 ≺ e3 ∧ e3 ≺ e2 ∧ ℓ(e3) = cor(p.c)

Figure 9: Formulas to eliminate non-minimal models.

Combining the careful scheduling of Chase with the formulas

of Fig. 9, we obtain the performance results shown in Table 2. The

results reported are based on runs using a 2018 MacBook Air with

1.6GHz Dual-Core Intel Core i5 processor with 16GB of RAM. These

times represent real time experienced by the user accounting for all

Table 2: Performance results. The columns indicate (in or-
der): the phrase analyzed, whether explicit dependency re-
lation is given, whether deep corruptions are excluded,
whether recent corruptions are excluded, the number of
models found, total elapsed time.

Phrase

Expl. Exclude Exclude # Models

Time

Dep. Deep Recent Found

Ex. 1 5 0.53s

Ex. 1 ✓ 3 0.42s

Ex. 1 ✓ ✓ ✓ 1 0.33s

Ex. 2 4 0.48s

Ex. 2 ✓ 2 0.41s

Ex. 2 ✓ ✓ ✓ 0 0.31s

Ex. 17 2,478 4m15.08s

Ex. 17 ✓ 40 2.64s

Ex. 17 ✓ ✓ ✓ 0 0.51s

surrounding computations including compiling the Copland phrase

into Chase input and processing the results to be visualized in a

web browser.

In the worst case, (Example 17 run without any constraints)

the search terminates and discovers 2,478 models in 4 minutes

15 seconds. If the search is artificially limited to inspecting only

5,000 structures, Chase can inspect all these in under 10 seconds.

However, as reported above, as soon as a dependency relation is

explicitly represented, the theory only admits 40 models which

are found in under 3 seconds. If recent and deep corruptions are

excluded, Chase exhausts it search in about 0.5 seconds without

finding any models.

8 RELATEDWORK
Too much has been written about remote attestation to perform a

comprehensive literature review, so we contrast our work with the

most relevant examples of related efforts in the literature.

One central tenet of the approach we take is that any fixed set

of attestation solutions will be insufficient to accommodate the in-

evitable variety encountered in the type and architecture of target

devices and the contexts in which the trust decisions they support

will be made. This observation is not new. This was implicit in [3]

which develops a set of principles that should guide the design and

implementation of remote attestation systems. More recently, the

IETF has formed a working group focused on Remote ATtestation

procedureS (RATS). Their draft architecture document [2] explicitly

acknowledges the need for flexibility of mechanisms in implement-

ing remote attestations. They also similarly envision the use of

layered architectures to further enhance the quality of attestations.

Similarly, Copland was designed to enable flexible specifications of

complex attestations [19]. A complementary body of work seeks

to develop flexible implementations that can be adapted to a wide

range of scenarios [14, 16, 17]. The flexibility allowed for by both

design and implementation leaves room for undesirable configu-

rations that can yield untrustworthy results. We believe that our

analysis methodology complements such work by offering a means
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for assessing the risk of any given option by understanding what

an adversary must do to defeat it.

Of course, our work assumes that the target system has certain

measurement capabilities and that they are reasonably effective at

detecting corruption of subcomponents. Plenty has been written

about particular approaches to measuring individual components

ranging from flexible and programmable solutions [8, 24] to fixed

solutions designed for particular architectures or components [5, 11,

12]. That line of research lies below the level of abstraction used in

our executionmodel. However, it would be interesting to investigate

whether the ideas we develop here could be suitably adapted to

analyzing the measurement strategies for particular components.

In particular, it may be possible to combine Copland [19] with the

MSRR specification language for measurements [8] to obtain a top-

to-bottom specification. By adapting the methods presented here,

one would then have an accompanying top-to-bottom trust analysis

as well.

Although many approaches take into account the possibility

of an adversary interfering, few explicitly consider a runtime ad-

versary that can interfere during an attestation. There are a few

exceptions, most notably [21] which is the basis of the current work.

The adversary model was enriched in [20] to account for manipula-

tion of evidence in transit, a possibility not explored by the current

work. Another analytical framework for analyzing attestations can

be found in [4] in which they account for the effects of corruption

on an attestation. The primary difference is that runtime corrup-

tions are not considered. Additionally, the analysis is focused on

Intel’s “late launch” capability. None of these analytic frameworks

have any automated support. To the best of our knowledge the cur-

rent work is the first automated analysis methodology for remote

attestation.

9 CONCLUSION
In this paper we introduced an approach to automated trust analy-

sis of layered attestation protocols. We introduce a tool chain that

ingests the specification of a layered attestation protocol written

in the Copland language together with a configurable set of sys-

tem assumptions, and produces a characterization of all the ways

an active adversary might avoid detection by the attestation pro-

tocol. Our methodology presents opportunities for designers and

implementers alike in developing attestation protocols and under-

standing how they help buy down risk when used in support of

trust decisions.

Our approach is to compile a Copland specification into a par-

tially ordered set of measurement events and apply our general-

purpose model finder for geometric logic, called Chase, to charac-

terize all the ways an active adversary can avoid detection under a

given set of assumptions. This strategy requires us to equip Chase

with a first-order logical theory that axiomatizes our execution

model in the presence of an active adversary. We develop the the-

ory of saturated queries and demonstrate that this theory correctly

captures our intended denotation (Theorem 12). We present an

axiomatization of the theory of saturated queries and prove that

this axiomatization is correct (Theorem 16).

While the adversary model used in this paper is a useful one,

it does not capture all the ways to interfere with the expected

functioning of a layered attestation. We believe a fruitful line of

future research would be to expand the adversary model to account

for the ability to tamper with the integrity of evidence and to alter

the control flow of an attestation. Such capabilities are reminiscent

of the abilities of a network adversary assumed in the analysis

of cryptographic protocols. A promising direction would be to

determine how to integrate analyses using Chase with analyses

using cryptographic protocol analysis tools. This would allow for

a more complete understanding of the true benefits provided by

well-designed layered attestations.
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