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Abstract. Remote attestation is a technology for establishing trust in
a remote computing system. Copland is a domain-specific language for
specifying attestation protocols that operate in diverse, layered mea-
surement topologies. An accompanying reference semantics character-
izes attestation-relevant system events and bundling of cryptographic
evidence. In this work we formally define and verify the Copland Com-
piler and Copland Virtual Machine for executing Copland protocols. The
compiler and vm are implemented as monadic, functional programs in
the Coq proof assistant and verified with respect to the Copland reference
semantics. In addition we introduce the Attestation Manager Monad as
an environment for managing attestation freshness, binding results of
Copland protocols to variables, and appraising evidence results. These
components lay the foundation for a verified attestation stack.

Keywords: Remote attestation · Verification · Domain specific
languages

1 Introduction

Semantic Remote Attestation is a technique for establishing trust in a remote
system by requesting evidence of its behavior, meta-evidence describing evi-
dence properties, and locally appraising the result. Remote attestation by vir-
tual machine introspection was introduced by Haldar and Franz [18] and subse-
quently refined [5,7,8,19,40,41] to become an important technology for security
and trust establishment.

In its simplest form remote attestation involves an attester (or target) and
an appraiser. The appraiser requests evidence from an attester that executes
an attestation protocol sequencing measurements to gather evidence and meta-
evidence. Upon receiving evidence from the attester, the appraiser performs an
appraisal to determine if it can trust the attester.
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As system complexity increases so increases attestation and appraisal com-
plexity. Federations of targets, systems-of-systems, privacy and security, and
layering all introduce a need for complex, multi-party attestations. To address
this need the authors and their colleagues developed Copland [39], a language
for defining and executing attestation protocols. Copland has a formal semantics
defining measurement, where measurement is performed, measurement ordering,
and evidence bundling.

Our aspirational goal is developing a formally verified execution environment
for Copland protocols. This work centers on a formal model for compiling and
executing Copland in an operational environment. We define a compiler, virtual
machine, and run-time environment as functional programs in Coq, then prove
them compliant with the Copland formal semantics. As such it informs our
development of an attestation manager in CakeML by providing a detailed formal
definition of Copland protocol execution.

2 Virus Checking as Attestation

A simple motivating example for Copland is treating virus checking as attesta-
tion. Suppose that an appraiser would like to establish if a target system is virus
free. The obvious approach is for the appraiser to request virus checking results
as an attestation of the remote machine and appraise the result to determine
the remote machine’s state. The Copland phrase for this attestation is:

@p [(ASP vc ā p t)]

asking platform p to invoke virus checker vc as an attestation service provider
targeting applications t running on p.

Simply doing a remote procedure call places full trust in vc and its operational
environment. The target could lie about its results or an adversary could tamper
with the virus checking system by compromising the checker or its signature file.
An adversary could also compromise the operational environment running the
checker or execute a man-in-the-middle replay attack.

A stronger attestation would make a request of the target that includes an
encrypted nonce to ensure measurement freshness. The target would decrypt
the nonce, gather evidence from the checker, and return the evidence and nonce
signed using its private key. The appraiser would check the signature and nonce
as well as checking the virus checker results. While the virus checker produces evi-
dence of system state, the signature and nonce produce meta-evidence describing
how evidence is handled. The Copland phrase for this attestation is:

@p {n}[(ASP vc ā p t) → SIG]

adding an input nonce, n, and asking p to sign the measurement result.
Evidence from the virus checker may still be compromised if the virus checker

executable or signature file were compromised by an adversary. The attestation
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protocol can be improved to return a measurement of the checker’s operational
environment in addition to virus checking results. The Copland phrase for this
stronger attestation is:

@p {n}[@ma {n}[(ASP h b̄ p v) → SIG] → (ASP vc ā p t) → SIG]

where ma is a trusted and isolated measurement and attestation domain with
read access to p’s execution environment. h is a composite measurement of v, the
virus checking infrastructure–p’s operating system along with the virus checking
executable and signature file. These all occur before virus checking with the
result included in a signed evidence bundle.

Measurement order is critical. An active adversary may compromise a com-
ponent, engage in malice, and cover its tracks while avoiding detection. Ordering
constrains the adversary by making this process more difficult [40]. If the virus
checker is run before its executable or signature file are hashed the adversary
has much longer to compromise the checker than if they are hashed immediately
before invoking the checker. Ensuring measurement order is thus critical when
verifying attestation protocols and critical to any execution or transformation of
protocol representations.

The attestation becomes yet stronger by extending to include the signature
file server used to update application signatures. This server operates on a dif-
ferent system that is remote to the system being appraised. However, its state
impacts the overall state of the virus checking infrastructure. The target system
can include information about the server by performing a layered attestation
where evidence describing the remote signature server is included in the target’s
evidence. The target p sends an attestation request to the server q that responds
in the same manner as p:

@p {n}[@q {n}[(ASP m c̄ q ss) → SIG] → @ma {n}[(ASP h b̄ p v) → SIG] → (ASP vc ā p t) → SIG]

While the virus checking-as-attestation example is trivial, it exposes critical
characteristics of attestation protocols that motivate and impact verification:
– Flexible mechanism—There is no single way for performing attestation or

appraisal. A language-based approach for specifying attestation protocols is
warranted [7].

– Order is important—Confidence in measurement ordering is critical to trust-
ing an appraisal result. Preserving measurement ordering from protocol spec-
ification to execution is a critical correctness property [39–41].

– Trust is relative—Different attestations and appraisals result in different levels
of trust. Formally specifying the semantics of attestation and appraisal is
necessary for choosing the best protocol [7,8].

3 Copland Language and Reference Semantics

Copland is a domain specific language and formal semantics for specifying remote
attestation protocols [39]. A Copland phrase is a term that specifies the order
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and place where an attestation manager invokes attestation services. Such ser-
vices include basic measurement, cryptographic bundling, and remote attesta-
tion requests. Copland is designed with expressivity and generality as foremost
goals. As such Copland parameterizes attestation scenarios over work leaving
specifics of measurement, cryptographic functions, and communication capabil-
ities to protocol negotiation and instantiation.

3.1 Copland Phrases

The Copland grammar appears in Fig. 1. The non-terminal A represents prim-
itive attestation actions including measurements and evidence operations. The
constructor ASP defines an Attestation Service Provider and represents an
atomic measurement. ASP has four static parameters, m, ā, p, and r that iden-
tify the measurement, measurement parameters, the place where the measure-
ment runs, and the measurement target. A place parameter identifies an attesta-
tion manager environment, and supports cross-domain measurements that chain
trust across attestation boundaries. Parameters to an ASP are static and must
be bound during protocol selection. Protocol participants must ensure they are
properly supported by the platforms involved.

t ← A | @p t | (t → t) | (t ≺ t) | (t ∼ t)
A ASP m ā p r CPY SIG HSH

Fig. 1. Copland Phrase Grammar where: m = asp id ∈ N; p = place id ∈ N; r =
target id ∈ N; ā is a list of string arguments; and π = (π1, π2) is a pair of evidence
splitting functions.

Remaining primitive terms specify cryptographic operations over evidence
already collected in a protocol run. CPY, SIG, and HSH copy, sign and hash
evidence, respectively. The cryptographic implementations underlying SIG and
HSH are negotiated among appraiser and target when a protocol is selected.

The key to supporting attestation of layered architectures is the remote
request operator, @, that allows attestation managers to request attestations
on behalf of each other. The subscript p specifies the place to send the attes-
tation request and the subterm t specifies the Copland phrase to send. As an
example, the phrase @1(@2(t)) specifies that the attestation manager at place
1 should send a request to the attestation manager at place 2 to execute the
phrase t. Nesting of @ terms is arbitrary within a phrase allowing expressive lay-
ered specifications parameterized over the attestation environment where they
execute.

The three structural Copland terms specify the order of execution and the
routing of evidence among their subterms. The phrase t1 → t2 specifies that t1
should finish executing strictly before t2 begins with evidence from t1 consumed
by t2. The phrase t1

π≺ t2 specifies that t1 and t2 run in sequence with π spec-
ifying how input evidence is routed to the subterms. Conversely, t1 π∼ t2 places
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no restriction on the order of execution for its subterms allowing parallel exe-
cution. Both branching operators (≺ and ∼) produce the product of executing
their subterms.

3.2 Concrete Evidence

Copland evidence is structured data representing the result of executing a Cop-
land phrase. Evidence and meta-evidence allow an appraiser to make a trust
decision about the attesting platform. The concrete evidence definition appears
in Fig. 2 and its structure corresponds closely to that of Copland phrases. Of note
are the mt and N constructors that do not correspond to a Copland phrase. The
former stands for “empty”, or absence of evidence, and the latter for nonce evi-
dence. Concrete measurement results are raw binary data and could be anything
from a hash of software–the bs in U bs e–to a digital signature over evidene e–
the bs in G bs e. The inductive e parameter accumulates sequential evidence via
the → phrase, where deeper nesting implies earlier collection. Ultimately, the
guarantee of measurement ordering comes from the Copland Virtual Machine
semantics rather than the evidence structure.

e mt U bs e G bs e H bs N n bs e SS e e PP e e

Fig. 2. Concrete Evidence grammar where bs is raw binary data and n = nonce id ∈ N

3.3 Copland LTS Semantics

The Copland framework provides an abstract specification of Copland phrase
execution in the form of a small-step operational Labeled Transition System
(LTS) semantics. States of the LTS correspond to protocol execution states, and
its inference rules transform a Copland phrase from a protocol description to an
evidence shape.

A single step is specified as s1
�� s2 where s1 and s2 are states and � is a

label that records attestation-relevant system events. The reflexive, transitive
closure of such steps, s1

c�∗ s2, collects a trace, c, of event labels representing
observable attestation activity. C(t, p, e) represents an initial configuration with
Copland phrase t, starting place p, and initial evidence e. D(p, e′) represents the
end of execution at place p with final evidence e′. Therefore, C(t, p, e)

c�∗ D(p, e′)
captures the complete execution of Copland phrase t that exhibits event trace c.

In addition to the operational LTS semantics, the Copland specification
defines a strict partial order on attestation events called an Event System. Event
Systems are constructed inductively where: (i) Leaf nodes represent base cases
and hold a single event instance; and (ii) Before nodes (t1� t2) and Merge nodes
(t1 �� t2) are defined inductively over terms. Before nodes impose ordering while
Merge nodes capture parallel event interleaving where orderings within each
sub-term are maintained. The Event System denotation function, V, maps an
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V([SIG]ii+1, p, e) = SIGevent(i, p, [[e]]p)
V([ASP m ā q r]ii+1, p, e) = ASPevent(i, p, q, r,m, ā,Up,q,m(e))

V([@q t]ij , p, e) = REQ(i, p, q, t, e) V(t, q, e) RPY(j − 1, p, q, E(t, q, e))
V([t1

(π1,π2)∼ t2]ij , p, e) = SPLIT(i, (π1, π2), ...)
(V(t1, p, π1(e)) V(t2, p, π2(e)))
JOIN(j 1, ..)

Fig. 3. Event system semantics (a representative subset of rules)

annotated Copland term, place, and initial evidence to a corresponding Event
System. A representative subset of this semantics [39] appears in Fig. 3.

Each event instance is labeled by a unique natural number and an identifier
for the place where it occurred. Measurement and cryptographic events corre-
spond exactly to primitive Copland terms, while communication events REQ and
RPY model a request and reply interaction to a remote place. The SPLIT event
captures functions π1 and π2 that filter evidence passed to subterms, and JOIN
captures the gathering of evidence from each subterm post-execution when they
are combined as a composite evidence structure. Taken together, these rules are
useful as a reference semantics to characterize attestation manager execution
and denote evidence structure. Any valid implementation of Copland execution
will obey this semantics.

4 Copland Compiler and Virtual Machine

Copland execution is implemented as a compiler targeting a monadic, virtual
machine run-time. The Copland Compiler translates a Copland phrase into a
sequence of commands to be executed in the Copland Virtual Machine (CVM).
copland compile (Fig. 7) takes as input an Annotated Copland term and returns a
computation in the Copland Virtual Machine Monad. Annotated Copland terms
extend Copland phrases with a pair of natural numbers that represent a range
of identifiers. The compiler uses these ranges to assign a unique label to every
system event that will occur during execution. The LTS semantics does this
similarly. Event identifiers play a key role in the proof that links the LTS and
CVM semantics.

The Copland Virtual Machine (CVM) Monad is a state and exception monad
in Coq adapted from the Verdi framework for formally verifying distributed sys-
tems [38,47]. The CVM Monad implements the standard state monad prim-
itives bind, return, put, and get in the cannonical way. It also provides the
standard functions for executing state monad computations (runState, evalState,
execState), the always-failing computation (failm), and getters/putters special-
ized to the CVM internal state fields. Accompanying these definitions are proofs
that the CVM Monad obeys the cannonical state monad laws [15].

A general monadic computation St takes a state parameter of type S as input,
and returns a pair of an optional return value of type A and an updated state.
The Coq signature for St is:
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Definition St(S A : Type) : Type := S -> (option A) * S

The CVM Monad is a specialization of St with the CVM st type as its state
structure. CVM st is a record datatype with fields that hold configuration data
for the CVM as it executes.

Measurement primitives build computations in the CVM Monad that per-
form two primary functions: simulate invocation of measurement services and
explicitly bundle the evidence results. To simulate measurement, invoke ASP
(Fig. 4) appends a measurement event to the st trace field of CVM st, tagging
it with the parameters of the service invoked along with the unique identifier
x derived from annotations on the originating ASP term. Because x is guaran-
teed unique per-protocol due to the way Copland terms are annotated, it can
also serve as an abstract representation of the binary string measurement result.
This approach accounts for multiple, independent invocations of the same ASP
during a protocol and captures changes in a target’s state over time. To fin-
ish, invoke ASP bundles the result in a Copland Evidence constructor for ASPs.
A single function do prim compiles all primitive Copland terms using a similar
strategy. A concrete instantiation of the CVM will require additional plumbing
to map ASP IDs and digital signature invocations to concrete measurement and
cryptographic services independently validated for robustness.

Definition invoke_ASP (x:nat) (i:ASP_ID) (l:list Arg) : CVM EvidenceC :=

p <- get_pl ;;

e <- get_ev ;;

add_tracem [Term.umeas x p i l];;

ret (uuc i x e).

Fig. 4. Example monadic measurement primitive

When interpreting a remote request term @pt or a parallel branch t1 π∼ t2
CVM execution relies on an external attestation manager that is also running
instances of the CVM. To pass evidence to and from these external components
we use the shared memory st store component of the CVM st, relying on glue
code to manage external interaction with st store. sendReq in Fig. 5 is responsible
for placing initial evidence into the shared store at index reqi and initiating a
request to the appropriate platform, modeled by a REQ system event. It then
returns, relying on receiveResp to retrieve the evidence result after the remote
place has finished execution. Uniqueness of event ids like reqi ensures that CVM
threads will not interfere with one another when interacting with st store.

Figure 6 shows two uninterpreted functions that simulate the execution of
external CVM instances. remote evidence represents evidence collected by run-
ning the term t at place p with initial evidence e. Similarly, remote trace rep-
resents the list of events generated by running term t at place p. There is no
evidence parameter to remote trace because the system events generated for a
term are independent of initial evidence. We provide specializations of these
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Definition sendReq (t:AnnoTerm) (q:Plc) (reqi:nat) : CVM unit :=

p <- get_pl ;;

e <- get_ev ;;

put_store_at reqi e ;;

add_tracem [REQ reqi p q (unanno t)].

Fig. 5. Example monadic communication primitive

Definition remote_evidence (t:AnnoTerm) (p:Plc) (e:EvidenceC) : EvidenceC.

Definition remote_trace (t:AnnoTerm) (p:Plc) : list Ev.

Fig. 6. Primitive IO Axioms

functions for both remote and local parallel CVM instances. Because the core
CVM semantics should be identical for these specializations, we also provide
rewrite rules to equate them. However, their decomposition enables a smoother
translation to a concrete implementation where differences in their glue code
may be significant.

Each case of the Copland Compiler in Fig. 7 uses the monadic sequence oper-
ation to translate a Copland phrase into an instance of the CVM Monad over
unit. The individual operations are not executed by the compiler, but returned
as a computation to be executed later. This approach is inspired by work that
uses a monadic shallow embedding in HOL to synthesize CakeML [20]. The shal-
low embedding style [16] allows the protocol writer to leverage the sequential,
imperative nature of monadic notation while also having access to a rigorous
formal environment to analyze chunks of code written in the monad. It also
leverages Coq’s built-in name binding metatheory, avoiding this notoriously dif-
ficult problem in formal verification of deeply embedded languages [1].

The first three compiler cases are trivial. The ASP term case invokes the
do prim function discussed previously that generates actions for each primitive
Copland operation. The @ term case invokes sendReq, doRemote, receiveResp in
sequence. sendReq was described previously and receiveResp is defined similarly.
doRemote models execution of a remote CVM instance by retrieving initial evi-
dence from the store, adding a simulated trace of remote events to st trace, then
placing the remotely-computed evidence back in the shared store. Finally, the
linear sequence term (t1 → t2) case invokes copland compile recursively on the
subterms t1 and t2 and appends the results in sequence.

The branch sequence case (t1
(sp1,sp2)≺ t2) filters the initial evidence into

evidence for the two subterms using the split evm helper function. The commands
for the t1 and t2 subterms are then compiled in sequence, placing initial evidence
for the respective subterm in the CVM st before executing each, and extracting
evidence results after each. A sequential evidence constructor combines evidence
to indicate sequential execution and emits a join event.
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In the branch parallel case (t1
(sp1,sp2)∼ t2) the commands for each subterm

will execute in a parallel CVM thread. The helper function startParThreads starts
threads for the two subterms then appends the trace (shuffled events el1 el2)
to st trace, where el1 and el2 are event traces for the two subterms derived
from uninterpreted functions that mimic CVM execution. shuffled events is itself
an uninterpreted function that models an interleaving of the two event traces.
Event shuffling is modeled explicitly in the LTS semantics, thus we add an axiom
stating that shuffled events behaves similarly. Similar to the @ term case, we use
the shared store to pass evidence to and from the parallel CVM thread for each
subterm. After running both threads, we retrieve the final evidence from the
result indices, combine evidence for the two subterms with a parallel evidence
constructor, and emit a join event. We leave the thread model abstract in the
CVM semantics so that attestation managers can run in diverse environments
that may or may not provide native support for concurrency.

Fixpoint copland_compile (t:AnnoTerm): CVM unit :=
match t with
| aasp (n,_) a =>

e <- do_prim n a ;;
put_ev e

| aatt (reqi,rpyi) q t’ =>
sendReq t’ q reqi ;;
doRemote t’ q reqi rpyi ;;
e’ <- receiveResp rpyi q ;;
put_ev e’

| alseq r t1 t2 =>
copland_compile t1 ;;
copland_compile t2

| abseq (x,y) (sp1,sp2) t1 t2 =>
e <- get_ev ;;
p <- get_pl ;;
(e1,e2) <- split_evm x sp1 sp2 e p ;;
put_ev e1 ;; copland_compile t1 ;;
e1r <- get_ev ;;
put_ev e2 ;; copland_compile t2 ;;
e2r <- get_ev ;;
join_seq (Nat.pred y) p e1r e2r

| abpar (x,y) (sp1,sp2) t1 t2 =>
e <- get_ev ;;
p <- get_pl ;;
(e1,e2) <- split_evm x sp1 sp2 e p ;;
let (loc_e1, loc_e1’) := range t1 in
let (loc_e2, loc_e2’) := range t2 in
put_store_at loc_e1 e1 ;;
put_store_at loc_e2 e2 ;;
startParThreads t1 t2 p (loc_e1, loc_e1’) (loc_e2, loc_e2’) ;;
(e1r, e2r) <- get_store_at_2 (loc_e1’, loc_e2’) ;;
join_par (Nat.pred y) p e1r e2r

end.

Definition run_cvm (t:AnnoTerm) (st:cvm_st) : cvm_st :=
execSt (copland_compile t) st.

Fig. 7. The Copland Compiler–builds computations as sequenced CVM commands

Monadic values represent computations waiting to run. run cvm t st (bottom
of Fig. 7) interprets the monadic computation (copland compile t) with initial
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state st, producing an updated state. This updated state contains the collected
evidence and event trace corresponding to execution of the input term and initial
evidence in st. The evidence and event trace are sufficient to verify correctness
of run cvm with respect to the LTS semantics.

5 Verification

Verifying the Copland Compiler and Copland Virtual Machine is proving that
running compiled Copland terms results in evidence and event sequences that
respect the Copland reference semantics. In earlier work [39] we proved for any
event v that precedes an event v′ in an Event System generated by Copland
phrase t (V(t, p, e) : v ≺ v′), that event also precedes v′ in the trace c exhibited
by the LTS semantics �∗ . This fact is repeated here as Theorem 1, where the
notation v �c v′ means that v precedes v′ in event sequence c.

Theorem 1 (LTS Respects Event System). If C(t, p, e)
c�∗ D(p, e′) and

V(t, p, e) : v ≺ v′, then v �c v′.

To verify the compiler and virtual machine we replace the LTS evaluation
relation with executing the compiler and virtual machine and show execution
respects the same Event System. Theorem 2 defines this goal:

Theorem 2 (CVM Respects Event System)

If run cvm (copland compile t)
{ st ev := e, st pl := p, st trace := [ ] } ⇓
{ st ev := e′, st pl := p, st trace := c } and
V(t, p, e) : v ≺ v′, then v �c v′.

The ⇓ notation emphasises that run cvm is literally a functional program written
in Coq. This differentiates it from the

c�∗ notation used to represent steps taken
in the relational LTS semantics. run cvm takes as input parameters a sequence
of commands in the CVM Monad and a CVM st structure that includes fields for
initial evidence (st ev), starting place (st pl), initial event trace (st trace), and a
shared store (st store, omitted in this theorem). It outputs final evidence, ending
place, and a final trace. The first assumption of Theorem2 states that running
the CVM on a list of commands compiled from the Copland phrase t, initial
evidence e, starting place p, and an empty starting trace produces evidence e′

and trace c at place p. The remainder is identical to the conclusion of Theorem 1.

5.1 Lemmas

To prove Theorem 2, it is enough to prove intermediate Lemma 3 that relates
event traces in the CVM semantics to those in the LTS semantics. Lemma 3
is the heart of our verification and proves that any trace c produced by the
CVM semantics is also exhibited by the LTS semantics. Lemma 3 also critically
proves that the CVM transforms Copland Evidence consistently with the LTS
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(et denotes the shape of evidence e and E the evidence reference semantics). This
allows an appraiser to rely on precise cryptographic bundling and the shape of
evidence produced by a valid CVM. We can combine Lemma3 transitively with
Theorem 1 to prove the main correctness result, Theorem 2.

Lemma 3 (CVM Refines LTS Event Ordering)

If run cvm (copland compile t)
{ st ev := e, st pl := p, st trace := [ ] } ⇓
{ st ev := e′, st pl := p, st trace := c } then
C(t, p, et)

c�∗ D(p, e′
t) and E(t, p, et) = e′

t

Lemma 3 rules out any “extra” CVM event traces not captured by the LTS
semantics. It is worth pointing out that we could extend the CVM semantics
with additional, perhaps non-attestation-relevant, system events and still prove
Theorem 2 directly. This is because Theorem 2 only mentions the ordering of
attestation-relevant system events captured by Event Systems. However, the
indirection through the LTS semantics was a convenient refinement because of
its closer compatibility with fine-grained CVM execution. The proof of Lemma3
proceeds by induction on the Copland phrase t that is to be compiled and run
through the CVM. Each case corresponds to a constructor of the Copland phrase
grammar and begins by careful simplification and unfolding of run cvm. Each
case ends with applying a semantic rule of the LTS semantics.

Because we cannot perform IO explicitly within Coq, we use st trace to
accumulate a trace of calls to components external to the CVM. This trace
records every IO invocation occurring during execution and their relative order-
ing. Lemma 4 says that st trace is irrelevant to the remaining fields that handle
evidence explicitly during CVM execution. This verifies that erasing the st trace
field from CVM st is safe after analysis.

Lemma 4 (st trace irrel)

If run cvm (copland compile t)
{ st ev := e, st store := o, st pl := p, st trace := tr1 } ⇓
{ st ev := e′, st store := o′, st pl := p′, st trace := } and

run cvm (copland compile t)
{ st ev := e, st store := o, st pl := p, st trace := tr2 } ⇓
{ st ev := e′′, st store := o′′, st pl := p′′, st trace := } then
e′ = e′′ and o′ = o′′ and p′ = p′′

Another key property upheld by the CVM semantics is that event traces are
cumulative. This means that existing event traces in st trace remain unmodified
as CVM execution proceeds. Lemma 5 encodes this, saying: If a CVM state with
initial trace m + + k interprets a compiled Copland term t and transforms
the state to some new state st′, and similarly t transforms a starting state with
initial trace k (the suffix of the other initial trace) to another state st′′, then the
st trace field of st′ is the same as m appended to the st trace field of st′′. We
proved this vital “distributive property” over traces and leveraged it in several
other Lemmas to simplify event insertion and trace composition.
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Lemma 5 (st trace cumul)

If run cvm (copland compile t)
{ st ev := e, st store := o, st pl := p, st trace := m ++ k } ⇓ st′ and

run cvm (copland compile t)
{ st ev := e, st store := o, st pl := p, st trace := k } ⇓ st′′ then
(st trace st′) = m ++ (st trace st′′)

5.2 Automation

There are many built-in ways to simplify and expand expressions in Coq. Unfor-
tunately, it is easy to expand either too far or not enough. The Coq cbv (call-by-
value) tactic unfolds and expands as much as it can, often blowing up recursive
expressions making them unintelligible. The milder cbn (call-by-name) tactic
often avoids this, but fails to unfold user-defined wrapper functions. To reach a
middle-ground, we define custom automation in Ltac. First we define a custom
“unfolder” that carefully expands primitive monadic operations like bind and
return, along with CVM-specific helper functions like invoke ASP.

Next we define a larger simplifier that repeatedly invokes the targeted
unfolder followed by cbn and other conservative simplifications. This custom sim-
plification is the first step in most proofs and is repeated throughout as helper
Lemmas transform the proof state to expose more reducible expressions. We also
leveraged the StructTact [48] library, a collection of general-purpose automation
primitives for common Coq structures like match and if statements, originally
developed for use in the Verdi [38,47] framework. Combined with our custom
automation this made our proofs robust against small changes to the CVM imple-
mentation (i.e. re-naming/re-ordering monadic helper functions), and greatly
simplified proof maintenance after more significant refactoring.

Lemma 6 (abpar store non overlap)

If well formed (abpar t1 t2) and range t1 = (a,b) and range t2 = (c,d)
then a �= c and b �= c and b �= d

A final custom piece of automation involves Lemmas that ensure accesses to
the shared store do not overlap when interpreting Copland terms that interact
with external components. When compiling the branch parallel term we derive
indices from term annotations and use them to insert initial evidence and retrieve
final evidence from the store. We must prove arithmetic properties like Lemma6
to show that store accesses do not overlap. The proof follows from the definition
of the well formed predicate and the annotation strategy. We provide Ltac scripts
to recognize proof states that are blocked by store accesses and discharge them
using Lemma 6.
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6 Attestation Manager(AM) Monad

While the CVM Monad supports faithful execution of an individual Copland
phrase, many actions before and after execution are more naturally expressed
at a layer above Copland. Actions preceding execution prepare initial evidence,
collect evidence results from earlier runs, and generate fresh nonces. Actions
following CVM execution include appraisal and preparing additional Copland
phrases for execution. These pre- and post-actions are encoded as statements in
the Attestation Manager (AM) Monad.

An early prototype of the AM Moand in Haskell [37] uses monad transformers
to provide a sufficient computational context for attestation and appraisal. An
example pseudo-code sequence of AM Monad commands appears in Fig. 8. The
run cvm(t, n) command runs an entire Copland phrase t with initial evidence n
inside the CVM Monad, lifting its evidence result into the AM Monad. Rather
than performing measurements directly, the AM Monad relies on run cvm as a
well-defined interface to the CVM. This allows an AM to abstract away details
of Copland phrase execution and compose facts about the CVM like those ver-
ified in Sect. 5 about events and evidence shapes. An initial formal definition
of the AM Monad in Coq, including nonce management and Copland phrase
invocation, is complete. The design of appraisal and its verification are ongoing.

let t = @42 (ASP 1 ā p r → SIG)
n ← generate nonce

e ← run cvm(t,n)

b ← appraise(t,e)

trust decision(b)

Fig. 8. Example sequence of commands in the AM Monad.

Using nonces is a common mechanism for preventing a man-in-the-middle
adversary from re-transmitting stale measurements that do not reflect current
system state. Nonces are critical to attestation and appear in Copland as prim-
itive evidence. Since evidence collection is cumulative in the CVM semantics,
nonces are generated and stored in the AM Monad state, embedded as initial
evidence alongside Copland attestation requests, then retrieved during appraisal.

Appraisal is the final step in a remote attestation protocol where an indirect
observer of a target platform must analyze evidence in order to determine the
target’s trustworthiness. Regardless of its level of scrutiny, an appraiser must
have a precise understanding of the structure of evidence it examines. The Cop-
land framework provides such a shared evidence structure, and Copland phrases
executed by the CVM produce evidence with a predictable shape. The AM
Monad provides an ideal context to perform appraisal because it can access
golden measurement and nonce values, cryptographic keys, and also link evi-
dence to the Copland phrase that generated it. This combination of capabilities
enables automatic synthesis of appraisal routines left for future work.
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7 Related Work

Integrity measurement tools include both static [29,42] and dynamic [10,17,21,
22,43,49] approaches that support both baseline and recurring measurements of
target systems. More general frameworks [27,31,35] support higher-level attes-
tation goals by combining primitive attestation services. Of note is the Maat
framework [31] that introduced the term Attestation Service Provider and moti-
vated the design of the Copland language. Other tools provide more specialized
measurement capabilities like userspace monitoring [14,32], VMM [13,46] and
kernel-level [28,33,34] introspection, and attestation of embedded/IoT platforms
[3,6,25,44,45].

The framework presented in the current work is designed as a complimentary
operational environment for the above tools. For more general frameworks like
Maat, we envision invoking sequences of ASPs within their environment as a
service (and vice-versa). For the more specialized measurement tools, we can
plug them in as primitive ASPs and compose their results as Copland Evidence.

Prior work in analysis of remote attestation systems involves virtualized
environments [2,7,27], comparing protocol alternatives [40,41], and semantics
of attestation [9,12]. These analyses articulate the complexities in the attesta-
tion design space and lay a foundation for future frameworks. Coker et al. [7] is
of particular influence, as the design principle of Trustworthy Mechanism was a
primary motivation of this work.

HYDRA [11] (Hybrid Design for Remote Attestation) was the first hard-
ware/software hybrid RA architecture to build upon formally-verified compo-
nents, and that achieved design goals laid out in their prior work [12]. ERAS-
MUS [4] levereged HYDRA as a base security architecture, but added real-
time assurances for resource-critical embedded platforms. VRASED (Verifiable
Remote Attestation for Simple Embedded Devices) extended these ideas to a
concrete RA design, becoming the first formal verification “of a HW/SW co-
design implementation of any security service” [30]. They verify end-to-end
security and attestation soundness properties in LTL by automatically extract-
ing hardware properties from Verilog specifications and manually incorporating
independently-verified cryptographic software properties. While their end-to-end
security guarantees are convincing for a specific embedded platform, our attes-
tation managers support a wider range of attestation scenarios.

8 Future Work and Conclusion

In this work we have verified the Coq implementation of a Copland compiler and
monadic virtual machine. Specifically, we proved that the output of compilation
and virtual machine execution respects the small-step LTS Copland semantics.
Artifacts associated with this verification are publicly available on github [36].
All proofs are fully automated and the only admitted theorems are axioms that
model interaction with IO components external to the core virtual machine.

Verification of the compiler and vm are part of our larger effort to construct
a formally verified attestation system. Figure 9 shows this work in context with
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Fig. 9. Verification stack showing verification dependencies and execution path. Solid
lines represent implementations while dashed lines represent mathematical definitions.

gray elements representing supporting work or work in progress. Above proto-
col execution is a negotiation process that selects a protocol suitable to both
appraiser and target. Ongoing work will formally define a “best” protocol and
verify the negotiated protocol is sufficient and respects privacy policy of all
parties.

Below protocol execution is an implementation of the Copland Compiler and
Copland Virtual Machine in CakeML [26] running on the verified seL4 micro-
kernal [23,24]. CakeML provides a verified compilation path from an ML subset
to various run-time architectures while seL4 provides separation guarantees nec-
essary for trusted measurement. We are embedding the semantics of CakeML
in Coq that will in turn be used to verify the compiler and vm implementa-
tions. Unverified implementations of both components have been implemented
and demonstrated as a part of a hardened UAV flight control system.

When completed our environment will provide a fully verified tool stack that
accepts an attestation request, returns evidence associated with that request, and
supports sound appraisal of that evidence. Analysis tools that compare protocol
alternatives will benefit from implementations that are faithful to formal arti-
facts, ultimately enabling more robust trust decisions. This work is an important
first step creating a verified operational environment for attestation.
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