
Verifying TPM Protocols Using a State Monad?

Brigid Halling and Perry Alexander

Information and Telecommunication Technology Center
The University of Kansas

{bhalling,palexand}@ku.edu

Abstract. This work presents continuing results of an effort to verify
trusted computing protocols using a state monad. The protocols ad-
dressed originate in work verifying the Trusted Platform Module (TPM)
that serves as the hardware root-of-trust for storage and reporting in
building a trusted computing base. Using PVS, we specify TPM com-
mands as state transformations and use a state monad to sequence them
to represent protocols. Protocols presented here include the Privacy CA
Attestation Protocol and two variants of a Migration Protocol. We verify
correctness of each protocol and demonstrate the impacts of weakening
the CA Protocol on security properties. All protocols are specified and
verified automatically using PVS decision procedures and rewriting sys-
tem.

1 Introduction

The Trusted Platform Module (TPM) is essential for trusted computing serving
as both the root of trust for storage and reporting [3]. As such, it warrants for-
mal verification to ensure correct behavior of both the device and protocols that
use it. In our efforts to formalize and verify TPM-centered protocols, we have
adopted the use of a state monad to sequence command execution and model
state. Using PVS [10], we developed a general purpose TPM model and verified
a monadic model of a Privacy CA centered remote attestation protocol [6]. Here
we report on generalizing the approach to examine other trusted computing pro-
tocols including a weakened remote attestation protocol and migration protocols
for PVS data.

Using a state monad to model command execution, we have previously ver-
ified the correctness of a remote attestation protocol known as the CA Pro-
tocol [6]. This protocol allows an external appraiser to assess system state by
communicating with its TPM. In examining the protocol, questions arise con-
cerning its complexity. To justify design decisions we have weakened the CA
protocol to demonstrate necessity of protocol elements. We use this weakened
model to analyze an attack on the protocol demonstrating the impacts of one
TPM falsely assuming the identity of another.

? This work was sponsored in part by the Battelle Memorial Institute under PO US001-
0000328568

As a root of trust for storage and reporting, the TPM must protect its data.
However, at times it becomes necessary to migrate data—primarily keys—from
one TPM to another for backup, data migration or key sharing within a network.
To do this, the TPM uses a migration protocol to guarantee confidentiality and
integrity. Because data is potentially exposed during migration, protocol veri-
fication is critical. From a verification perspective, modeling such a protocol is
interesting due to the need to model two TPMs involved in a single protocol.

2 Background

The Trusted Platform Module (TPM) [12] is a secure cryptoprocessor at the
heart of establishing and maintaining a trusted computing infrastructure [3].
The main capabilities of the TPM are threefold: establishing and protecting a
main identifier; storing and securely reporting system measurements; and bind-
ing secrets to a specific platform.

The endorsement key (EK) is an asymmetric key that serves as the unique
identifier of the TPM. The EK−1 is maintained confidentially, while EK serves
as the root-of-trust for reporting. The storage root key (SRK), also an asymmet-
ric key, provides a root key for chaining wrapped keys—asymmetric keys whose
private key is encrypted by another asymmetric key. Wrapped keys can be stored
outside of the TPM (through the process of key migration), but may only be
used if its wrapping key is also installed. The use of the SRK as the root of these
chains of keys then binds the keys to its associated TPM.

The TPM uses special purpose registers for storing and extending hashes
called platform configuration registers (PCRs) to store configuration informa-
tion. A PCR records hashes of a platform’s components during boot or at run-
time in a manner preserving value and order. Each component is hashed as it
is started and that hash used to extend the hash presenting boot thus far. The
integrity of PCRs is ensured by controlling access through locality and the TPM
software stack. A quote mechanism providing cryptographic evidence of integrity
delivers PCRs to an external appraiser via an attestation process.

2.1 The CA-Based Remote Attestation Protocol

Among the most important functions of the TPM is reporting system measure-
ments via attestation. The TPM does this through the use of Remote Attestation
where at the request of an external appraiser, the TPM gathers PCRs and deliv-
ers them in a trusted fashion [5]. The appraiser then determines whether or not
it trusts the received PCR values and subsequently measured the system based
on PCR contents. To achieve this while preserving the identity of the TPM, a
trusted Privacy Certificate Authority (CA or Privacy CA) is used. The CA ver-
ifies that an attestation identity key (AIK) belongs to a specific TPM. Figure 1
shows the Privacy CA-based attestation protocol.

The TPM command TPM_MakeIdentity creates an AIK and wraps it with
the SRK, allowing it to be used only by the TPM that created it. TPM_MakeIdentity

TPM User Software Privacy CA Appraiser

Attestation Request with n and PCR mask

MakeIdentity(CAd)

(AIK, {|CAd,AIK|}
AIK−1)

certify({|CAd,AIK|}
AIK−1)

{K,CAd}EK

ActivateIdentity({K,CAd}EK)

K

Quote(n,AIK, PCRm)

{|n, PCRm|}AIK−1

({|CAd,AIK|}
AIK−1 , {|n, PCRm|}AIK−1)

Fig. 1. Sequence diagram for the Privacy CA Protocol.

also outputs a CA label digest that identifies the CA certifying the AIK and an
AIK signed with AIK−1. Since this TPM is the only entity that can sign with
the AIK, this signature ensures the AIK came from the right TPM [12].

Our focus is the TPM, but for this protocol we most model the behavior
of the Privacy CA, albeit abstractly. The command CA_certify models the
interaction between the CA and the system where the TPM resides. The Privacy
CA provides a session key (K) encrypted by the public EK associated with the
TPM that it believes has requested the certificate. This allows only that TPM
to decrypt the new session key.

TPM_ActivateIdentity ensures the Privacy CA is communicating with the
correct TPM by attempting to decrypt K with the EK−1 of the TPM [12]. The
resulting symmetric key is used by the CA to encrypt the identity credential of
the TPM. Later we weaken this protocol deliver the new session key without
encrypting in response to questions from a team attempting to synthesize the
TPM. We demonstrate formally how a session key for one TPM cannot be used
by another and that removing encryption removes this protection.

We next create a quote—signing PCR values and a nonce with the AIK—
using the command TPM_Quote} [12]. This quote can then be returned to the
user who may send it on to the appraiser where it will check the PCRs to know
whether or not to trust the system.

2.2 Migration Protocols

The TPM must protect its identity and the data it stores from unauthorized
access and modification. Situations arise where it becomes useful for keys to be
exported out of one TPM and imported into another using a migration protocol.
Migration is critical for TPM usage, but represents potential source of data leak-
age. If data outside the TPM is not appropriately protected and authenticated,
migration can become a liability.

The two main TPM keys, EK and SRK, are tied to a specific TPM when
created. These keys are non-migratable—they are unique to the TPM and cannot
be migrated or exported from the TPM. Migratable keys, on the other hand,
are not bound to any specific TPM, and can be used or even created outside
of a TPM. With appropriate authorization, these keys can be moved between
TPMs [7]. A third type of key, Certified Migratable Keys were developed as an
upgrade to migratable keys, but due to the complexity that these keys and their
related commands add, we will focus here on migratable keys.

TPM 1 (Kmig) Migration Authority (Kma) User Software TPM 2 (Kdest)

AuthorizeMigrationKey(Kma)

ticket

CreateMigrationBlob(ticket,K
−1
mig

)

rand, {XOR(Kmig, rand)}Kma

blob = {XOR(Kmig, rand)}Kma

MigrateKey(Kma,Kdest, blob)

blob′ = {XOR(Kmig, rand)}Kdest

rand,Kmig, blob′

ConvertMigrationBlob(Kdest, blob
′, rand)

{K−1
mig
}Kdest

Fig. 2. Sequence diagram for the Migration Protocol.

Figure 2 shows the sequence of events that define the Migration Protocol. In
this diagram, TPM 1 is the source of the key to be migrated (Kmig) and TPM
2 is the destination of the key. The use of a middleman, the Migration Author-
ity (MA), is required to coordinate the migration, as Kmig temporarily passes
through. The MA is authorized using the command TPM_AuthorizeMigrationKey

that returns a migration ticket that specifies the MA. This ticket is used in the
creation of a migration blob with the command TPM_CreateMigrationBlob.
TPM_CreateMigrationBlob creates a blob (blob) and a random number (rand).
blob consists of an XOR encryption of the key being migrated and rand en-
crypted by the key of the MA. With the command TPM_MigrateKey, the MA
rewraps blob with Kdest, forming blob’ and allowing only TPM 2 access. rand
is passed directly to TPM 2 to prevent the MA from accessing Kmig. TPM 2
can now install the blob using TPM_ConvertMigrationBlob, that performs the
necessary decryptions and essentially results in Kmig wrapped with Kdest, which
can then be loaded into TPM 2 [11, 12].

A similar but simpler and less secure protocol that cuts out the MA portion
of the protocol may be used. This directly authorizes the use of Kdest as the
migration key and requires no random number, allowing the protocol to be more
of a direct rewrapping of the Kmig using Kdest. Therefore, the blob output by
TPM_CreateMigrationBlob can be sent directly to TPM 2, and loaded without
needing TPM_ConvertMigrationBlob. This protocol is much more efficient, and
therefore is preferred. If, however, a third party is facilitating the migration, the
MA should be used [12, 8].

3 Modeling TPM Protocols

We define an abstract model of the TPM as a transition system by defining
state transitions and outputs over an abstract state for each command. We can
sequence command execution using the state monad. Commands define single
state transformations while command sequences thread state between transfor-
mations. The model allows us to explore both the effects of single commands
and the cumulative effects of protocol execution.

3.1 System State

To model TPM data, we define a PVS data type called tpmData whose construc-
tors closely resemble the data definitions specified in the TPM standard. We
avoid the complexity of bit-level representations specified capturing the essence
of TPM functionality.

We define a PVS data type called tpmAbsInput to represent the abstract
syntax of the TPM command set. Each TPM command specified in the TPM
standard (TPM_Command) has an associated constructor in the tpmAbsInput
data structure, giving an induction principle for the command set which is au-
tomatically usable by PVS to quantify over all possible TPM inputs. Similarly,
we define the data type tpmAbsOutput, which includes the correct parameters
as well as a return code that is returned by each TPM command as output.

The return codes of tpmAbsOutput indicate either a non-fatal error has been
found or the command has been executed successfully. A return code indicating
success, however, does not necessarily imply that good data has been output. For
example, in the case of encrypting and decrypting data, since data is handled

at the bit level within the TPM, it is difficult to know if a decryption fails by
looking at that data. Therefore, the command will still run successfully, but it
will be using bad data. Therefore, if we know a decryption failure has occurred,
we return badData (of type tpmData). This will become important as we discuss
the weakening of the CA Protocol in Section 4.1.

tpmAbsState : TYPE =

[# srk:(tpmKey?), ek:(tpmKey?), keys:KEYSET

, pcrs:PCRVALUES, locality:LOCALITY, permFlags:PermFlags

, permData:PermData, stanyFlags:StanyFlags, stanyData:StanyData

, stclearFlags:StclearFlags, stclearData:StclearData

, memory:mem, outData:set[tpmData], keyGenCnt:K

, randCnt:K, restore:restoreStateData #];

Fig. 3. Abstract TPM and system state record data structure.

Figure 3 shows the PVS record structure, tpmAbsState, used to represent
an abstraction of the internal state of the TPM, the memory associated with
the system where it is running, and record of previously output data. The asym-
metric keys EK and SRK are easily recognizable within tpmAbsState. The pcrs
field represents the array of hash sequences that define the value of a PCR. A list
of all loaded keys is stored in the field keys. This loaded keys list is important to
the Migration Protocol, as it provides an easy mechanism to ensure that a key
has been migrated from one TPM to another. keys is a list of both the private
key values (vals) of the loaded keys for easy identification and a list of the entire
keys (set), that includes numerous fields related to the key.

The fields memory and outData are not part of the TPM itself, but represent
the state of its associated system. memory represents system memory where TPM
inputs and outputs are stored. outData plays a major part of the weakened
CA Protocol, discussed in Section 4.1 by capturing all output generated by a
protocol. Note that outData is not a part of either the TPM or its associated
system and use used strictly for verification.

3.2 Command Execution

To specify TPM command execution, we define state transition and output func-
tions as defined for a classical transition system. The outputCom function pro-
duces system output and is defined as a mapping from state and input to an
output. Similarly, the executeCom function is the next-state function and is de-
fined as a mapping from state and input to state. Given a state, s and input
command, c, the output, state pair resulting from executing the command c in
state s is defined as the pair (outputCom(s, c), executeCom(s, c)). Refer to earlier
work [6] for the details of how individual TPM command execution is modeled.

3.3 Modeling State Transitions

Monads [9, 13] are well known in functional programming where they are used
for implementing errors, state, and concurrency among many other computation
elements. In our TPM model, command sequencing is modeled using a state
monad to thread states through a sequence of TPM commands using a classic
state monad. In effect, the state monad simulates the behavior of memory in the
TPM and its associated system.

All monads are characterized by a type and the functions return and bind.
Return lifts a data element into the monad, and bind is similar to a let expres-
sion [9, 13] that performs an operation and uses its result as input to a subsequent
operation. In our monad, the type is tpmAbsState, the calculations performed
are command executions, and bind is used to pass the output of a command
to the next command in sequence. In our monad, the type is tpmAbsState, the
calculations performed are command executions, and bind is used to pass the
output of a command to the next command in sequence.

The rationale for using a monad is that a TPM executes commands in se-
quence much like assembly commands in a conventional microprocessor. The
output state from one command is the input state to the next command. Mod-
eling the command sequence i;i’ conventionally using a LET form would look
like the following:

LET (o’,s’) = (outputCom(s,i),executeCom(s,i)) IN

(outputCom(s’,i’),executeCom(s’,i’))

where (o’,s’) is the output, state pair of running command i. We can see
that the input state while running i’ is s’, the state returned from running i.
However, writing long sequences of let forms is impractical for our purposes.

The bind function of the monad is an encapsulation of this let form. It elimi-
nates the necessity of manually passing the resulting state as input, passing state
in the background. The result of using this bind is a pattern of modeling and
execution that looks very similar to the execution pattern of TPM commands.

To define a state monad for TPM command execution, we first define a simple
data type, State, having a single field called state that holds a function from
an abstract state to an abstract output, abstract state pair:

State : DATATYPE

BEGIN

state(runState:[tpmAbsState->[tpmAbsOutput,tpmAbsState]]):state?

END State;

Given s, a value of type tpmAbsState, and m, a State, the application
runState(m)(s) will result in a tpmAbsOutput, tpmAbsState pair. This is pre-
cisely the output expected. Note that the use of State and state in this def-
inition is somewhat misleading. Neither is actually a state, but a state monad
that given a state will generate a new state. The data type should be viewed as
a kind of state generation or next-state function, not a single state.

We now define return, bind (>>=) and sequence (>>). Sequence is a special
case of bind commonly defined in most state monad implementations where the
output of the previous execution is dropped. First we define return whose form
is:

return(x:tpmAbsOutput):State = state(LAMBDA (s:tpmAbsState) : (x,s));

return lifts a member of tpmAbsState into State—given a tpmAbsState, it
returns a State that when run produces the original tpmAbsState.
runState is a function from tpmAbsState to a tpmAbsOutput, tpmAbsState

pair. Clearly, the state part of the output should be the state lifted by return.
But what about the output? If we are lifting tpmAbsState there is no way to
extract an output. The bind function handles this by simply requiring an output
be specified as a parameter.

The second function defined is bind, typically represented by the infix oper-
ator >>=. The bind operation takes a monad and a function from tpmAbsOutput
to a monad and produces a new monad. The signature is of the form:

m:State >>= f:[A->State] : State

Unfortunately, the signature alone provides little insight into the actual func-
tion of bind. The implementation is:

>>= (m:State,f:[A->State]):State =

state(LAMBDA(s0:S):

LET (a,s1) = runState(m)(s0) IN

runState(f(a))(s1));

The biggest clue to the behavior of bind comes in the LET form where (a,s1)
is bound to running m—the first argument to bind—on state s0. a is bound to
the output and s1 to the state resulting from running m on s0. If we were doing
this outside the monad, we would refer to this as the intermediate state between
the two executions.

The result of the bind is runState(f(a))(s1). First consider runState(f(a)).
Looking at the signature, f(a) is a mapping from something of type A to a
monad of type State. What we get is a next state monad with the previous
output bound to a—the previous output is available to the calculation of the
next state. runState pulls the state function out of the new state monad and
evaluates that function with s1, the intermediate state. So, the state is threaded
through the evaluation with the user providing only s0, the initial state. Always
remember that bind does not produce a state. Instead it produces a state monad
that given a state will produce an output, state pair.

Another common operation is a specialization of bind called sequence, repre-
sented by the infix operator >>. It is similar to bind, sequencing operations, but
it drops the output of previous command execution and simply passes state:

>> (m:State,f:State):State =

state(LAMBDA(s0:S):

LET (a,s1) = runState(m)(s0) IN

runState(f)(s1));

3.4 Memory and the Monad

The memory field of tpmAbsState is not a part of the TPM itself, but represents
memory use by the TPM’s environment for storing values. For example, the
command TPM_MakeIdentity generates a new identity key, called aik that the
Privacy CA and the TPM_Quote command use. Commands such as CA_certify,
TPM_ActivateIdentity, and TPM_Quote require aik as input. Furthermore, we
require the aik to verify command preconditions.

The model fragment below shows a portion of the CA Protocol model where
the TPM_MakeIdentity command is followed by the CA_certify command. The
output from TPM_MakeIdentity can easily be passed to CA_certify using bind
(>>=). We can see the outputs aik and idBind from TPM_MakeIdentity used as
inputs to CA_certify.

TPM_MakeIdentity(e,d,k)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) : CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

However, to use that same data in a subsequent command that is not run
sequentially with TPM_MakeIdentity requires storing data. We use memory and
the CPU_saveOutput and CPU_read commands. These are not TPM commands,
but simulate the behavior of the system associated with the TPM. The field
memory is an array mapping a natural number to a tpmAbsOutput. The output
of a command (of type tpmAbsOutput) can be saved using CPU_saveOutput, and
later read using the CPU_read. The memory field allows any number of outputs
to be saved to the tpmAbsState, and therefore to be passed from command to
command.

To add a TPM_Quote to the end of our previous example, we must em-
ploy the use of memory. To be able to use the output of TPM_MakeIdentity,
we save it into memory at location 1 using CPU_saveOutput(1). Since we are
using bind to sequence these commands, we are still passing along the output
of TPM_MakeIdentity, and therefore do not need to read it in before calling
CA_certify. However, after running CA_certify, we have a new output and
must call CPU_read(1) to retrieve the output of TPM_MakeIdentity so we can
use that output as the input for TPM_Quote.

TPM_MakeIdentity(e,d,k)

>>= CPU_saveOutput(1)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) : CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

>> CPU_read(1)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) : TPM_Quote(aik,n,p)

ELSE TPM_Noop(a)

ENDCASES)

Since a command like CA_certify has preconditions that require knowing
exactly what is used as input, we also use saved memory as a means to retrieving
that input data. This is shown in the following model fragment where s represents
the final state of the protocol, we ensure that no other output has rewritten
the saved output of TPM_MakeIdentity, and the function certify? checks the
preconditions of the CA_certify command:

OUT_MakeIdentity?(s‘memory(1)) AND

certify?(idKey(s‘memory(1)),idBinding(s‘memory(1)))

CA_unsigned_outData : THEOREM
FORALL (state:(afterStartup?), e:(tpmEncAuth?), cad:(tpmDigest?),

aik:(tpmKey?), n:(tpmNonce?), p:PCR_SELECTION, w,x,y,z:nat) :
private(badEK)/=private(goodEK)
AND w/=x AND w/=y AND w/=z AND x/=y AND x/=z AND y/=z =>
LET state1 = state WITH [’ek:=badEK] IN
LET (a,s) = runState(TPM_MakeIdentity_noSign(e,cad,aik)
>>= CPU_saveOutput(x)
>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF
OUT_MakeIdentity(aik,idBind,m) :
CA_certify_noSign(aik,signData(idBind))

ELSE TPM_Noop(a)
ENDCASES)

>>= CPU_saveOutput(y)
>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF
OUT_Certify(aik,data,m) : TPM_ActivateIdentity(aik,data)
ELSE TPM_Noop(a)

ENDCASES)
>>= CPU_saveOutput(w)
)(state1) IN

member(private(state1’ek),vals(state1’keys))
AND member(private(k),vals(state1’keys))
AND wellFormedRestore?(s’restore) AND makeIdentity?(state1,k) =>
OUT_MakeIdentity?(s’memory(x)) AND
LET key=idKey(s’memory(x)) IN
certify_noSign?(key,signData(idBinding(s’memory(x)))) =>

s’memory(y)=OUT_Certify(key,
encrypted(tpmAsymCAContents(tpmSessKey(initSessKeyVal),

digest(signData(idBinding(s’memory(x))))),
key(goodEK)),CPU_SUCCESS) AND

LET encr=dat(s’memory(y)) IN activateIdentity?(s,key,encr) =>
OUT_ActivateIdentity?(s’memory(w))
AND (a=OUT_ActivateIdentity(sKey(blob(badData)),TPM_SUCCESS)

OR a=OUT_ActivateIdentity(sessK(badData),TPM_SUCCESS)
OR a=OUT_ActivateIdentity(badData,TPM_SUCCESS))

AND s’outData=add(symmKey(s’memory(w)),
add(key,add(signData(idBinding(s’memory(x))),
outData(state1))));

Fig. 4. Weakened CA Protocol.

4 Verifying Protocols

Two protocol analysis problems arose from our initial verification of the original
Privacy CA protocol requiring us to generalize the monad-based technique. The
original verification established that the Privacy CA protocol produces the cor-
rect result while ensuring trustworthiness. We were then asked to examine the
impact of an attack on the original protocol and to perform similar analysis on
TPM data migration protocols.

Figures 4 and 5 share a common structure that appears repeatedly in this
work. A LET binding captures protocol execution and its associated body ex-
presses the theorem to be verified. In Figure 4 commands comprising the proto-
col are in boldface. Commands are sequenced in the LET binding with bind and
sequence operators. CASES account for erroneous output by skipping commands
that will not execute. Following protocol evaluation, state and other data bound
to LET variables becomes the subject of a correctness theorem forming the LET
body. Correctness theorems take many forms, but most either compare an ex-
ecution result with a golden value or check properties of the state. In Figure 5
important clauses defining correctness are in boldface.

4.1 CA Protocol with Weakening

In our main CA Protocol verification using PVS [6], we execute the protocol
shown in Figure 1 using an EK that is assumed to be good and that all of the
necessary preconditions are true. We are then able to verify the resulting output
is as expected and that the final state includes all necessary updates. Such a
verification is useful to us to show that our method of modeling the protocol
was valid. However, the pragmatic impact of such a proof is minimal—it is
simply proving the correct output results from an unimpeded run. In this effort
we demonstrate resilience to a spoofing attack where one TPM system attempts
to assume the identity of another.

To introduce an attacker to this model, we introduce TPM A whose EK
we’ll refer to as badEK masquerading as another TPM, TPM B with EK goodEK.
TPM A will contact the Privacy CA as if it were TPM B. Normally, the Privacy
CA will authenticate a TPM using the signature of the data it is sent. We will
weaken this protocol and attempt to send unsigned data from TPM A to the
Privacy CA and identify it as being from TPM B. Therefore, the CA will return
the requested data to the user encrypted with goodEK ({K,CAd}goodEK). In
Figure 4, this encryption is data output by OUT_Certify.
TPM_ActivateIdentity attempts to proceed as normal, but should never

be able to properly decrypt data as it does cannot have access to goodEK−1.
It is important to note that TPM_ActivateIdentity has still run successfully
and produces an output as expected. We could continue to run the remaining
commands of the protocol, and continue to successfully run.

Looking at the output of the protocol in Figure 4 with a as the output, and
s as the resulting state, we can see that in all resulting cases, the first parameter
of a contains badData the result of a failed decryption using an incorrect key.

Although not immediately obvious, the symmKey(s’memory(w)) that is added
to s’outData is this same parameter, and therefore also contains badData. This
shows us that the CA does not need to receive signed data from the TPM in
order to only allow a good TPM to be able to decrypt the key that unlocks the
identity credential.

As mentioned in Section ??, outData is not a part of the TPM itself, but was
added to aid in protocol analysis. For each TPM command run in a sequence,
output data is added to the list outData allowing Dolev-Yao style attack models
where the enemy has access to all communication [4]. At the end of protocol
execution, we can then check this list for bad data or data that should not be
available to an attacker. This allows us to determine if something went wrong
with any part of the protocol execution, even if it completed without incident.
The presence of badData in this outData list indicates that something went
wrong during protocol execution.

When comparing the protocol shown in Figure 1 to the protocol shown in
Figure 4 that there are four different entities in the diagram (the TPM, the user,
the CA, and the appraiser), yet in our model of the same system, these entities
are not distinct. The only difference we can see is the difference in the command
prefixes TPM and CA. In essence, this is the only distinction necessary. There is an
implied user calling the commands at the implied request of an appraiser. Since
the CA and TPM are communicating with the same user, these commands are
run in sequence.

By showing that running that command sequence results in bad data for
every possible output, we are able to prove that a TPM attempting to identify
itself with the wrong EK value results in an inability to correctly run a CA
Protocol. We were able to prove this theorem using PVS decision procedures
and rewriting system. However, we were not able to completely discharge all
type check conditions (TCCs) associated with this proof. The unprovable TCCs
all relate to badData, which has a type that is more generic than PVS accepts.
Based on the nature of badData, we have found that such cases are acceptable
within our model due to the inherent nature of badData being of an unspecific
type.

4.2 Migration Protocol

The migration protocol example is interesting because it involves two TPMs
communicating to move data from one to the other while maintaining confiden-
tiality and integrity. The sequence diagram depicting the Migration Protocol
seen in Figure 2 includes four distinct entities—TPM 1, TPM 2, a user, and
Migration Authority (MA). However, unlike the CA Protocol, we must use more
than command prefixes to distinguish between entities due to the existence of
two distinct TPMs. Since the state monad threads a single state through the
sequence of commands, we must have one state monad for each TPM.

Notice from the protocol modeled using PVS shown in Figure 5 the two main
LET statements that name the outputs of running the command sequences—
the pairs (a1,s1) and (a2,s2). These output, state pairs correspond with the

migrate_scheme : THEOREM
FORALL(state1,state2:(afterStartup?), dest,par,mig,ma:(tpmKey?), w,x,y:nat) :

migrateKey?(ma) AND w/=x AND w/=y AND x/=y
AND member(private(ma),vals(state1’keys)) AND member(private(mig),vals(state1’keys))
AND member(private(par),vals(state1’keys)) AND member(private(dest),vals(state2’keys))=>
LET (a1,s1) = runState(

TPM_AuthorizeMigrationKey(ma,migrate)
>>= CPU_saveOutput(w)
>>= LAMBDA (a:tpmAbsOutput) :

CASES a OF
OUT_AuthorizeMigrationKey(t,r) :
TPM_CreateMigrationBlob(par,m,t,encDat(mig))

ELSE TPM_Noop(a)
ENDCASES

>>= CPU_saveOutput(x)
>>= LAMBDA (a:tpmAbsOutput) :

CASES a OF
OUT_CreateMigrationBlob(rand,mb,r) : TPM_MigrateKey(ma,dest,mb)
ELSE TPM_Noop(a)

ENDCASES
)(state1),
d=encData(encDat(mig)) IN

createMigBlob?(state1,par,m,autData(s1’memory(w)),encDat(mig)) =>
a1=OUT_MigrateKey(encrypted(tpmXOR(

OAEP(tpmMigrateAsymkey(usageAuth(d),pubDataDigest(d),privKey(d)),
migrationAuth(d),privKey(d)),RNG(s1’randCnt-1)),key(dest))

,TPM_SUCCESS)
AND OUT_CreateMigrationBlob?(s1’memory(x)) AND
LET (a2,s2) = runState(

TPM_ConvertMigrationBlob(dest,migData(a1),random(s1’memory(x)))
>>= CPU_saveOutput(y)
>>= LAMBDA (a:tpmAbsOutput) :

CASES a OF
OUT_ConvertMigrationBlob(kb,r) : TPM_LoadKey2(dest,makeKey(kb))
ELSE TPM_Noop(a)

ENDCASES
)(state2) IN

convertMigBlob?(state2,dest,migData(a1),random(s1’memory(x)))
AND OUT_ConvertMigrationBlob?(s2’memory(y))
AND loadKey2?(state2,dest,makeKey(convertData(s2’memory(y)))) =>
a2=OUT_LoadKey2(makeKey(convertData(s2’memory(y))),TPM_SUCCESS) AND
s2=state2 WITH

[’keys:=(#vals:=add(private(mig),vals(keys(state2)))
,keys:=add(makeKey(convertData(s2’memory(y))),keys(keys(state2)))#)

,’memory:=s2’memory, ’outData:=s2’outData];

Fig. 5. Migration Protocol.

final outputs and states of TPM 1 and TPM 2 from Figure 2, respectively. The
functionality of the MA is included in the TPM 1 sequence.

We pass the pieces of both the output (a1) and state (s1) of TPM 1 as
input parameters to the TPM_ConvertMigrationBlob command of TPM 2. This
process of using the output from one thing as the input to the next is extremely
familiar. It is the entire reason we incorporate the state monad into our model.
Therefore, it would be entirely possible to set up this protocol using nested
monads. However, that adds a layer of complexity that is unnecessary for this
protocol. Perhaps if we modeled a protocol that included the use of more than
two TPMs this would be worth the effort. Such a scenario using the TPM,
however, is not likely.

To verify the Migration Protocol we show that the same key that was initially
a part of TPM 1, Kmig, is also loaded into TPM 2 after running the protocol (as
it is part of the keys list within the state). Using the decision procedures and
rewriting rules of PVS as well as some lemmas clarifying properties of keys, we
were able to prove the theorem shown in Figure 5. This assures us that Kmig is
a part of TPM 2. We have additionally proved other migration protocols of the
TPM, such as the simpler rewrapping protocol mentioned in Section 2.2, but
they are proved in the same way as the protocol we have thoroughly discussed
here.

4.3 Proof Complexity

A project goal is building models that can be reused by non-experts with modest
training. Thus, proof automation is important. Proofs of theorems shown are
accomplished using the PVS automatic rewriting system and the bash strategy
with some intervention where structural equivalence is applied. Run time for the
large proofs documented here is approximately 2 hours on a Macintosh Pro with
8GB of memory. This is a significant improvement over our original proofs of
the Privacy CA attestation protocol used grind that ran for multiple days.

Given the nature of our specifications, rewriting is a natural approach. We
allow PVS to construct rewrite rules without user input. The use of bash adds
simplification using BDDs and disjunctive flattening to discharge logical terms.
Structural equivalence decomposes equality checks for data types into equiva-
lence of their fields and is not included in the automated commands used.

5 Conclusions and Future Work

We have successfully demonstrated that the monadic approach used in earlier
attestation protocol verification efforts generalizes to other protocols and veri-
fication goals. Specifically, we have reported on verification of properties for a
simple attack, a weakened protocol, and two migration protocols. We have iden-
tified a common structure for protocols and proofs that should be applicable in
our continuing efforts to verify TPM protocols.

As we continue to develop models of TPM-related protocols, our represen-
tation of the TPM continues to grow both in terms of implemented commands
and detail of existing commands. As the complexity of the model grows, so does
the complexity of our proofs. We see great promise in the use of the newly added
outData construct in modeling attacks on TPM protocols as well as developing
new approaches for discovering other ways to model attacks. Ongoing work is
extending the current model to virtual TPMs (vTPMs) [1] and modeling direct
anonymous attestation (DAA) [2] protocols.

References

1. Berger, S., Caceres, R., Goldman, K., Perez, R., Sailer, R., van
Doorn, L.: vTPM: Virtualizing the Trusted Platform Module (2006),
http://www.kiskeya.net/ramon/work/pubs/security06.pdf, IBM T. J. Wat-
son Research Center, Hawthorne, NY 10532 USA

2. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM conference on Computer and communications security. pp.
132–145. ACM (2004)

3. Challener, D., Yoder, K., Catherman, R., Stafford, D., Doorn, L.V.: A Practical
Guide to Trusted Computing. IBM Press (2007)

4. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198 – 208 (March 1983)

5. Goldreich, O., Oren, Y.: Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology 7, 1–32 (1994),
http://dx.doi.org/10.1007/BF00195207, 10.1007/BF00195207

6. Halling, B., Alexander, P.: Verifying A Privacy CA Remote Attestation Protocol.
In: Proceedings of NASA Formal Methods (NFM 2013). pp. 398 – 412. No. 7871
in Lecture Notes in Computer Science, Moffett Field, CA, USA (May 2013)

7. Hardjono, T., Kazmierczak, G.: Overview of the TPM key management standard
(2005), https://www.trustedcomputinggroup.org/news

8. Kinney, S.L.: Trusted Platform Module Basics: Using TPM in Embedded Systems
(Embedded Technology). Newnes (2006)

9. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (1991), citeseer.nj.nec.com/moggi89notions.html

10. Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) Proc. of 11th International Conference on Automated Deduction.
Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer–Verlag,
Saratoga, NY (June 1992)

11. Trusted Computing Group: Interoperability Specification for Backup and Migra-
tion Services. Trusted Computing Group, version 1.0 revision 1.0 edn. (June 2005),
https://www.trustedcomputinggroup.org

12. Trusted Computing Group: TCG Trusted Platform Module Specification. Trusted
Computing Group, 3885 SW 153rd Drive, Beaverton, OR 97006, version 1.2 revi-
sion 103 edn. (July 2007), https://www.trustedcomputinggroup.org

13. Wadler, P.: The essence of functional programming. In: Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 1–14. Albequerque, New Mexico (1992), cite-
seer.nj.nec.com/wadler92essence.html

